40 resultados para single event latchup
Resumo:
Chemical analyses of manganese nodules from the Central Pacific Basin show that their chemical composition varies regionally, although that of the associated sediments is markedly uniform throughout the basin. Mn content varies from 16 to 32% in average. Its higher value is generally found in nodules from siliceous clay and a few from deep-sea clay. Fe content tends to enrich in nodules from deep-sea clay area. Most manganese nodules, except those from deep-sea clay, are remarkably depleted in Fe compared with ones from the other Pacific regions. Mostly, Cu and Ni contents exceed 1% in nodules from siliceous clay, and decrease towards the northwest of the basin where deep-sea clay is distributed. The inter-element relationship between manganese nodules and associated sediments suggests that the mechanism of incorporation of major and minor elements in nodules is apparently different from that of the associated sediments. This finding seems to provide a new interpretation on the problem why manganese nodules having low accumulation rate are not buried by the associated sediments with greater sedimentation rate and then occur on sediment-seawater interface.
Resumo:
In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.