398 resultados para saturation magnetization
Resumo:
Component natural remanent magnetizations derived from u-channel and 1-qcm discrete samples from ODP Site 919 (Irminger Basin) indicate the existence of four intervals of negative inclinations in the upper Brunhes Chronozone. According to the age model based on planktic oxygen isotope data, these "excursional" intervals occur in sediments deposited during the following time intervals: 32-34 ka, 39-41 ka, 180-188 ka and 205-225 ka. These time intervals correspond to polarity excursions detected elsewhere, known as Mono Lake, Laschamp, Iceland Basin and Pringle Falls. The isotope-based age model is supported by the normalized remanence (paleointensity) record that can be correlated to other calibrated paleointensity records for the 0-500 ka interval, such as that from ODP Site 983. For the intervals associated with the Mono Lake and Laschamp excursions, virtual geomagnetic poles (VGPs) reach equatorial latitudes and mid-southerly latitudes, respectively. For intervals associated with the Iceland Basin and Pringle Falls excursions, repeated excursions of VGPs to high southerly latitudes indicate rapid directional swings rather than a single short-lived polarity reversal. The directional instability associated with polarity excursions is not often recorded, probably due to smoothing of the sedimentary record by the process of detrital remanence (DRM) acquisition.
Resumo:
A combined study of magnetic parameters of basalt and andesite samples has been carried out in the framework of geological investigations of the Franz Josef Land. This study has included determination of coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility as well as examination of ferromagnetic minerals with a microscope. Data on chemical composition of the rocks have been obtained for all the samples, and radiological ages have been determined for the majority of the rocks. Thermomagnetic curves of the samples have been subdivided into four types depending on composition of ferromagnetic NRM carriers. Data showing multiple changes in the predominant composition of the igneous rocks have been obtained. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.
Resumo:
The basalts in Holes 519A, 522B, and 524 were studied for intensity of natural remanent magnetization, magnetic hysteresis, magnetic susceptibility, stability of isothermal remanence, and thermomagnetic behavior. Some of these properties are sensitive to both the composition and the microstructure of the magnetic minerals, others to composition only. Thus it is possible to separate the two effects and to trace the variation of effective magnetic grain size and degree of alteration within a lithologic unit or over a yet larger distance or time interval. The flow in Hole 519A is highly maghemitized at the top, the degree of maghemitization decreasing with depth in the flow. Effective grain size increases with increasing depth. Electron microprobe analysis of the titanomaghemite grains in these samples provides no support for the leaching out of iron during alteration. The pillows and flows in Hole 522B are distributed among a number of cooling units, and no systematic downhole variations are apparent. The inferred magneto-petrology is consistent with the cooling and alteration history that might be expected within the units. The upper and lower sills in Hole 524 are more uniform and have a larger concentration of well-developed magnetic mineral grains than the pillows and flows in Holes 519A and 522B. Maghemitization appears to have developed from the boundaries of the sills that are in contact with the sediments between the sills.