348 resultados para rough rock


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the mineralogical variability of siliceous and zeolitic sediments, porcellanites, and cherts at small intervals in the continuously cored sequence of Deep Sea Drilling Project Site 462. Skeletal opal is preserved down to a maximum burial depth of 390 meters (middle Eocene). Below this level, the tests are totally dissolved or replaced and filled by opal-CT, quartz, clinoptilolite, and calcite. Etching of opaline tests does not increase continously with deeper burial. Opal solution accompanied by a conspicuous formation of authigenic clinoptilolite has a local maximum in Core 16 (150 m). A causal relationship with the lower Miocene hiatus at this level is highly probable. Oligocene to Cenomanian sediments represent an intermediate stage of silica diagenesis: the opal-CT/quartz ratios of the silicified rocks are frequently greater than 1, and quartz filling pores or replacing foraminifer tests is more widespread than quartz which converted from an opal-CT precursor. As at other sites, there is a marked discontinuity of the transitions from biogenic opal via opal-CT to quartz with increasing depth of burial. Layers with unaltered opal-A alternate with porcellanite beds; the intensity of the opal-CT-to-quartz transformation changes very rapidly from horizon to horizon and obviously is not correlated with lithologic parameters. The silica for authigenic clinoptilolite was derived from biogenic opal and decaying volcanic components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure/low-temperature metabasites occupy a definite geological position within the structure of the Polar Urals and have a very important bearing on the understanding of the early history of the Ural Mountains. Recently obtained geological, petrographic, geochemical and isotope data allow some conclusions on this history. The metabasites of the Khord"yus and Dzela complexes contain relics of a Neoproterozoic (578 ±8 Ma) oceanic crust. This crust formed part of the base of the early Paleozoic (500 Ma) ensimatic island arc and experienced Ca-Al-Si±Na metasomatism and, probably, partial melting with the formation of boninite melts. However, so far no boninite volcanics have been found. The metabasites at the base of the island arc took part in the collision and as a consequence experienced glaucophane schist and greenschist facies metamorphism during the collision and obduction over the passive Baltic margin 350 ±11 Ma ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent sediments with distinct signs of hydrothermal alteration sampled in the Hess Deep(Galapagos Ridge, East Pacific Rise) contained a piece of ash-gray rock, which differed from other rock fragments by degree of consolidation, conchoidal fracture, and had properties of asbestos. Our studies found that the sample represented mixture of asbestos-like pyroxene of diopside-hedenbergite composition, amphibole of tremolite composition and a new mineral, which basic structure consisted of bands of triple pyroxene chains with the radical [Si6O16]. The latter can be regarded as intermediate between amphiboles and layered silicates. Also in some parts of the sample presence of trioctahedral vermiculite-chlorite was indicated. Genesis of the studied asbestos rock is considered from the standpoint of high-temperature hydrothermal-metasomatic alteration of sediment by post-magmatic mineralized halide solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Located in the path of the Southern Hemisphere westerly winds and in the source region of dust deposited in Antarctica during Glacial periods, southern Patagonia is a vantage point to reconstruct past changes in aeolian activity. Here we use high-resolution rock-magnetic and physical grain size data from site 2 of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) in order to develop magnetic proxies of dust and wind intensity at 52°S since 51,200 cal BP. Rock-magnetic analysis indicate the magnetic mineral assemblage is dominated by detrital magnetite. Based on the estimated flux of magnetite to the lake and comparison with distal dust records from the Southern Ocean and Antarctica, kLF is interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale, when ferrimagnetic grain size and coercivity influence is minimal. Comparison to physical grain-size data indicates that the median destructive field of isothermal remanent magnetisation (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension. Comparison with wind-intensity proxies from the Southern Hemisphere during the last Glacial period and with regional records from Patagonia since the last deglaciation including marine, lacustrine and peat bog sediments as well as speleothems reveals similar variability with MDFIRM up to the centennial time scale. MDFIRM is interpreted as a wind-intensity proxy independent of moisture changes for southeastern Patagonia, with stronger winds capable of transporting coarser magnetite bearing silts to the lake.