129 resultados para redbay ambrosia beetle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the pollen content of a marine core located near the bay of Guayaquil in Ecuador to document the link between sea surface temperatures (SST) and changes in rainfall regimes on the adjacent continent during the Holocene. Based on the expansion/regression of five vegetation types, we observe three successive climatic patterns. In the first phase, between 11,700 and 7700 cal yr BP, the presence of a cloud (Andean) forest in the mid altitudes and mangroves in the estuary of the Guayas Basin, were associated with a maximum in boreal summer insolation, a northernmost position of the Intertropical Convergence Zone (ITCZ), a land- sea thermal contrast, and dryness. Between 7700 and 2850 cal yr BP, the expansion of the coastal herbs and the regression of the mangrove indicate a drier climate with weak ITCZ and low ENSO variability while austral winter insolation gradually increased. The interval between 4200 and 2850 cal yr BP was marked by the coolest and driest climatic conditions of the Holocene due to the weak influence of the ITCZ and a strengthening of the Humboldt Current. After 2850 cal yr BP, high variability and amplitude of the Andean forest changes occurred when ENSO frequency and amplitude increased, indicating high variability in land-sea connections. The ITCZ reached the latitude of Guayaquil only after 2500 cal yr BP inducing the bimodal precipitation regime we observe today. Our study shows that besides insolation, the ITCZ position and ENSO frequency, changes in eastern equatorial Pacific SSTs play a major role in determining the composition of the ecosystems and the hydrological cycle of the Ecuadorian Pacific coast and the Western Cordillera in Ecuador.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30' lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance of Pinus and Picea at about 14,000 BP (estimated!), there developed a mosaic of prairies and stands of Quercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene. The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.