54 resultados para rate responses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075±0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological responses (ingestion rate, absorption rate and efficiency, respiration, rate, excretion rate) and scope for growth of a subtidal scavenging gastropod Nassarius conoidalis under the combined effects of ocean acidification (pCO2 levels: 380, 950, 1250 µatm) and temperature (15, 30 °C) were investigated for 31 days. There was a significant reduction in all the physiological rates and scope for growth following short-term exposure (1-3 days) to elevated pCO2 except absorption efficiency at 15 °C and 30 °C, and respiration rate and excretion rate at 15 °C. The percentage change in the physiological rates ranged from 0% to 90% at 15 °C and from 0% to 73% at 30 °C when pCO2 was increased from 380 µatm to 1250 µatm. The effect of pCO2 on the physiological rates was enhanced at high temperature for ingestion, absorption, respiration and excretion. When the exposure period was extended to 31 days, the effect of pCO2 was significant on the ingestion rate only. All the physiological rates remained unchanged when temperature increased from 24 °C to 30 °C but the rates at 15 °C were significantly lower, irrespective of the duration of exposure. Our data suggested that a medium-term exposure to ocean acidification has no effect on the energetics of N. conoidalis. Nevertheless, the situation may be complicated by a longer term of exposure and/or a reduction in salinity in a warming world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased atmospheric carbon dioxide leads to ocean acidification and carbon dioxide (CO2) enrichment of seawater. Given the important ecological functions of seagrass meadows, understanding their responses to CO2 will be critical for the management of coastal ecosystems. This study examined the physiological responses of three tropical seagrasses to a range of seawater pCO2 levels in a laboratory. Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were exposed to four different pCO2 treatments (442-1204 µatm) for 2 weeks, approximating the range of end-of-century emission scenarios. Photosynthetic responses were quantified using optode-based oxygen flux measurements. Across all three species, net productivity and energetic surplus (PG:R) significantly increased with a rise in pCO2 (linear models, P < 0.05). Photosynthesis-irradiance curve-derived photosynthetic parameters-maximum photosynthetic rates (P max) and efficiency (alpha) also increased as pCO2 increased (linear models, P < 0.05). The response for productivity measures was similar across species, i.e. similar slopes in linear models. A decrease in compensation light requirement (Ec) with increasing pCO2 was evident in C. serrulata and H. uninervis, but not in T. hemprichii. Despite higher productivity with pCO2 enrichment, leaf growth rates in C. serrulata did not increase, while those in H. uninervis and T. hemprichii significantly increased with increasing pCO2 levels. While seagrasses can be carbon-limited and productivity can respond positively to CO2 enrichment, varying carbon allocation strategies amongst species suggest differential growth response between species. Thus, future increase in seawater CO2 concentration may lead to an overall increase in seagrass biomass and productivity, as well as community changes in seagrass meadows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms inhabiting coastal waters naturally experience diel and seasonal physico-chemical variations. According to various assumptions, coastal species are either considered to be highly tolerant to environmental changes or, conversely, living at the thresholds of their physiological performance. Therefore, these species are either more resistant or more sensitive, respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an invasive gastropod that colonized bays and estuaries on northwestern European coasts during the 20th century. Small (<3 cm in length) and large (>4.5 cm in length), sexually mature individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390 µatm, 750 µatm, and 1400 µatm) at four successive temperature levels (10°C, 13°C, 16°C, and 19°C). At each temperature level and in each pCO2 condition, we assessed the physiological rates of respiration, ammonia excretion, filtration and calcification on small and large individuals. Results show that, in general, temperature positively influenced respiration, excretion and filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 µatm) but did not affect the other physiological rates. Overall, our results indicate that C. fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. Moreover, in this eurythermal species, moderate warming may play a buffering role in the future responses of organisms to ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the responses of the ecologically dominant Antarctic phytoplankton species Phaeocystis antarctica (a prymnesiophyte) and Fragilariopsis cylindrus (a diatom) to a clustered matrix of three global change variables (CO2, mixed-layer depth, and temperature) under both iron (Fe)-replete and Fe-limited conditions based roughly on the Intergovernmental Panel on Climate Change (IPCC) A2 scenario: (1) Current conditions, 39 Pa (380 ppmv) CO2, 50 µmol photons/m**2/s light, and 2°C; (2) Year 2060, 61 Pa (600 ppmv) CO2, 100 µmol photons/m**2/s light, and 4°C; (3) Year 2100, 81 Pa (800 ppmv) CO2, 150 µmol photons/m**2/s light, and 6°C. The combined interactive effects of these global change variables and changing Fe availability on growth, primary production, and cell morphology are species specific. A competition experiment suggested that future conditions could lead to a shift away from P. antarctica and toward diatoms such as F. cylindrus. Along with decreases in diatom cell size and shifts from prymnesiophyte colonies to single cells under the future scenario, this could potentially lead to decreased carbon export to the deep ocean. Fe : C uptake ratios of both species increased under future conditions, suggesting phytoplankton of the Southern Ocean will increase their Fe requirements relative to carbon fixation. The interactive effects of Fe, light, CO2, and temperature on Antarctic phytoplankton need to be considered when predicting the future responses of biology and biogeochemistry in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present data compilation includes dinoflagellates growth rate, grazing rate and gross growth efficiency determined either in the field or in laboratory experiments. From the existing literature, we synthesized all data that we could find on dinoflagellates. Some sources might be missing but none were purposefully ignored. We did not include autotrophic dinoflagellates in the database, but mixotrophic organisms may have been included. This is due to the large uncertainty about which taxa are mixotrophic, heterotrophic or symbiont bearing. Field data on microzooplankton grazing are mostly comprised of grazing rate using the dilution technique with a 24h incubation period. Laboratory grazing and growth data are focused on pelagic ciliates and heterotrophic dinoflagellates. The experiment measured grazing or growth as a function of prey concentration or at saturating prey concentration (maximal grazing rate). When considering every single data point available (each measured rate for a defined predator-prey pair and a certain prey concentration) there is a total of 801 data points for the dinoflagellates, counting experiments that measured growth and grazing simultaneously as 1 data point.