32 resultados para periodically poled


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we test various parameters in deep-sea sediments (bulk sediment parameters and changes in microfossil abundances and preservation character) which are generally accepted as indicators of calcium carbonate dissolution. We investigate sediment material from station GeoB 1710-3 in the northern Cape Basin (eastern South Atlantic), 280 km away from the Namibian coast, well outside today's coastal upwelling. As northern Benguela upwelling cells were displaced westward and periodically preceded the core location during the past 245 kyr (Volbers et al., submitted), GeoB 1710-3 sediments reflect these changes in upwelling productivity. Results of the most commonly used calcium carbonate dissolution proxies do not only monitor dissolution within these calcareous sediments but also reflect changes in upwelling intensity. Accordingly, these conventional proxy parameters misrepresent, to some extent, the extent of calcium carbonate dissolution. These results were verified by an independent dissolution proxy, the Globigerina bulloides dissolution index (BDX') (Volbers and Henrich, 2002, doi:10.1016/S0025-3227(02)00333-X). The BDX' is based on scanning electronic microscope ultrastructural investigation of planktonic foraminiferal tests and indicates persistent good carbonate preservation throughout the past 245 kyr, with the exception of one pronounced dissolution event at early oxygen isotopic stage (OIS) 6. The early OIS 6 is characterized by calcium carbonate contents, sand contents, and planktonic foraminiferal concentrations all at their lowest levels for the last 245 kyr. At the same time, the ratio of radiolarian to planktonic foraminiferal abundances and the ratio of benthic to planktonic foraminiferal tests are strongly increased, as are the rain ratio, the fragmentation index, and the BDX'. The sedimentary calcite lysocline rose above the core position and GeoB 1710-3 sediments were heavily altered, as attested to by the unusual accumulation of pellets, aggregates, sponge spicules, radiolaria, benthic foraminifera, and planktonic foraminiferal assemblages. Solely the early OIS 6 dissolution event altered the coarse fraction intensely, and is therefore reflected by all conventional calcium carbonate preservation proxies and the BDX'. We attribute the more than 1000 m rise of the sedimentary calcite lysocline to the combination of two processes: (a) a prominent change in the deep-water mass distribution within the South Atlantic and (b) intense degradation of organic material within the sediment (preserved as maximum total organic carbon content) creating microenvironments favorable for calcium carbonate dissolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical records of core intervals from ODP Sites 1259 and 1261 both from nannofossil biozone CC14. Our results reveal systematic variations in marine and detrital sediment contribution, depositional processes, and bottom water redox conditions during black shale formation at two locations on Demerara Rise in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive/sulfide-forming trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and sediment conditions throughout the deposition of black shale. These extreme redox conditions persisted and were periodically punctuated by short-termed periods with less reducing bottom waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable detritus sources, along with less reducing bottom water at the proposed shallower location (ODP Site 1259). At Site 1261, located at greater paleo-depth, redox fluctuations were more regular, and steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary mechanisms controlling continental supply and ocean redox state were time-invariant and kept the western equatorial Atlantic margin widely anoxic over millions of years.