46 resultados para pcb
Resumo:
The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n = 30) and ringed seals (n = 46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)2D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)2D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption.
Resumo:
A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic whitesided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest Sum PCN concentrations were found in samples from the latest sampling period.
Resumo:
Dead and dying glaucous gulls (Larus hyperboreus) were collected on Bjornoya in the Barents Sea in 2003, 2004 and 2005. Autopsies of the seabirds only explained a clear cause of death for three (14%) of the 21 birds. A total of 71% of the birds were emaciated. Liver and brain samples were analysed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ether (PBDEs), hexabromo-cyclododecanes (HBCDs) and mercury (Hg). High levels of OCPs, PCBs, PBDEs and alpha-HBCD were found in liver and brain. Compared to the dead and dying glaucous gulls found 1989, the congeners' composition tended to change toward more persistent compounds in the 2003-2005 samples. The brain levels of OCPs and PCBs did not differ between 1989 and 2003-2005, while the liver levels were significantly lower. The brain/liver ratio for PCB and PBDE significantly decreased with halogenations of the molecule, indicating a clear discrimination of highly halogenated PCBs and PBDEs entering the brain. There was further a clear negative correlation between contaminant concentrations and body condition. The brain levels were not as high as earlier published lethal levels of p,p'-DDE or PCB. However, more recent studies reported a range of sub-lethal OCP- and PCB-related effects in randomly sampled glaucous gulls. An additional elevation of pollutants due to emaciation may increase the stress of the already affected birds. The high brain levels of OCP, PCB and PBDE of present study might therefore have contributed to the death of weakened individuals of glaucous gull.
Resumo:
We investigated whether the hepatic cytochrome P450 1A activity (measured as 7-ethoxyresorufin-O-deethylase (EROD)) and plasma thyroid hormone and liver retinoid concentrations were explained by liver and blood levels of halogenated organic contaminants (HOCs) in free-ranging breeding northern fulmars (Fulmarus glacialis) from Bjornoya in the Norwegian Arctic. Hepatic EROD activity and liver levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were positively correlated, suggesting that hepatic EROD activity is a good indicator for dioxin and dioxin-like HOC exposure in breeding northern fulmars. There were not found other strong relationships between HOC concentrations and hepatic EROD activity, plasma thyroid or liver retinoid concentrations in the breeding northern fulmars. It is suggested that the HOC levels found in the breeding northern fulmars sampled on Bjornoya were too low to affect plasma concentrations of thyroid hormones and liver levels of retinol and retinyl palmitate, and that hepatic EROD activity is a poor indicator of polychlorinated biphenyl (PCB) and pesticide exposure.
Resumo:
Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adelie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.
Resumo:
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.
Resumo:
Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds.
Resumo:
Studies on the fate of organohalogen contaminants (OHCs) in wild top predator mammals in the Arctic have often been a challenge due to important knowledge deficiencies in the life history of the sampled animals. The present study investigated the influence of age, dietary and trans-generational factors on the fate of major lipophilic chlorinated and brominated OHCs in adipose tissue of a potential surrogate captive species for the polar bear (Ursus maritimus), the sledge dog (Canis familiaris) in West Greenland. Adult female sledge dogs (P) and their sexually-mature (F1) and/or pre-weaning pups (F1-MLK) were divided into an exposed group (EXP) fed blubber from a Greenland minke whale (Balaenoptera acutorostrata) and a control group (CON) given commercially available pork fat. Large dietary treatment-related differences in summed and individual congener/compound adipose tissue concentrations of polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs) were found between the EXP and CON groups for all the sledge dog cohorts. However, among the F1-MLK, F1 and P dogs in both of the EXP and CON groups, little or no difference existed in PBDE, HCB, CHL and PCB concentrations, suggesting higher state of equilibrium in adipose tissue concentrations from a very early stage of life. In contrast, the distribution pattern (proportions to the summed concentrations) of OHC classes, and the major congeners/ compounds constituting those classes, varied on a dietary group- and/or cohort-dependent manner. The present captive sledge dog study demonstrated the importance of the confounding effects of diet composition, mother-pup association (maternal transfer), reproductive status (nursing), and to a lesser extent age in the fate of OHCs in adipose tissue of a large top carnivore mammal.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.
Resumo:
Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, sum DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); alpha-hexachlorocyclohexane (alpha-HCH) decreased (-11%/year); beta-HCH increased ( + 8.3%/year); and sum PCB and sum chlordane (CHL), both contaminants at highest concentrations in all years (>1 ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+ 3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). sum chlorobenzene, octachlorostyrene, sum mirex, sum MeSO2-PCB and dieldrin did not significantly change. Increasing sum PBDE levels (+13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(alpha)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or "weathering" of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year. DDT patterns were not associated with any explanatory variables, possibly related to local DDT sources. Contaminant pattern trends may be useful in distinguishing the possible role of ecological/diet changes on contaminant burdens from expected dynamics due to atmospheric sources and weathering.
Resumo:
In an investigation of gas hydrates in deep ocean sediments, gas samples from Deep Sea Drilling Project Site 533 on the Blake Outer Ridge in the northwest Atlantic were obtained for molecular and isotopic analyses. Gas samples were collected from the first successful deployment of a pressure core barrel (PCB) in a hydrate region. The pressure decline curves from two of the four PCB retrievals at in situ pressures suggested the presence of small amounts of gas hydrates. Compositional and isotopic measurements of gases from several points along the pressure decline curve indicated that (1) biogenic methane (d13C = -68 per mil; C1/C2 = 5000) was the dominant gas (>90%); (2) little fractionation in the C1/C2 ratio or the C carbon isotopic composition occurred as gas hydrates decomposed during pressure decline experiments; (3) the percent of C3, i-C4, and CO2 degassed increased as the pressure declined, indicating that these molecules may help stabilize the hydrate structure; (4) excess nitrogen was present during initial degassing; and (5) C1/C2 ratios and isotopic ratios of C gases were similar to those obtained from conventional core sampling. The PCB gas also contained trace amounts of saturated, acyclic, cyclic, and aromatic C5-C14 hydrocarbons, as well as alkenes and tetrahydrothiophenes. Gas from a decomposed specimen of gas hydrate had similar molecular and isotopic ratios to the PCB gas (d13C of -68 per mil for methane and a C1/C2 ratio of about 6000). Regular trends in the d13C of methane (about -95 to -60 per mil) and C1/C2 ratios (about 25000 to 2000) were observed with depth. Capillary gas chromatography (GC) and total scanning fluorescence measurements of extracted organic material were characteristic of hydrocarbons dominated by a marine source, though significant amounts of perylene were also present.
Resumo:
The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska, Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (d15N, d13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted d15N and d13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan and Canadian Arctic signatures were intermediate. Between-subpopulation dietary differences predominated over interannual, seasonal, sex, or age variation. Among various brominated and chlorinated contaminants, diet signatures significantly explained variation in adipose levels of polybrominated diphenyl ether (PBDE) flame retardants (14-15%) and legacy PCBs (18-21%). However, dietary influence was contaminant class-specific, since only low or nonsignificant proportions of variation in organochlorine pesticide (e.g., chlordane) levels were explained by diet. Hudson Bay diet signatures were associated with lower PCB and PBDE levels, whereas East Greenland and Svalbard signatures were associated with higher levels. Understanding diet/food web factors is important to accurately interpret contaminant trends, particularly in a changing Arctic.