38 resultados para otolith microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10?7 W kg?1 and 10?2 m2 s?1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a inline image m thick layer near the bottom and within inline image km across the slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set includes the profiling measurements collected from ship during the cruise HM 2012610 onboard the Research Vessel Håkon Mosby. The cruise was conducted under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to investigate the mixing and entrainment of the dense oceanic overflow from the Faroe Bank Channel. The profiling measurements delivered with this data set include conventional conductivity-temperature-depth (CTD) measurements, current profile measurements using a lowered acoustic Doppler Current Profiler (LADCP) system and ocean microstructure measurements using a vertical microstructure profiler (VMP2000). The observational programme was designed to measure turbulence and mixing in the overflow plume which, in addition to the shear-induced mixing at the plume-ambient interface, is hypothesized to be influenced by several processes including mesoscale eddies, secondary circulation and internal waves.