97 resultados para organic model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable carbon isotopic composition of the planktonic foraminifera Globigerinoides sacculifer and G. ruber (white) and sedimentary organic matter from the northern Gulf of Aqaba have been investigated to estimate changes in delta13CDIC in surface waters during the last 1,000 years. The high sedimentation rates at the core sites (about 54 cm/Kyear) provide high temporal resolution (~10 years). Recent sediments at the top of the cores reflect conditions younger than 1950. The delta13C records of the planktonic foraminifera from three multicores display similar trends, showing a uniform and consistent pattern before the 1750s, and a gradual decrease of approximately 0.63? over the last two centuries. This decrease seems to track the decrease of delta13CDIC in surface waters, which is mainly caused by the increase of anthropogenic input of 13C-depleted CO2 into the atmosphere. Similarly, a trend towards lighter values of the carbon isotopic composition of sedimentary organic matter (delta13Corg) during the last 200 years supports the interpretation obtained from the planktonic foraminiferal delta13C. Furthermore, direct measurements of seawater show that delta13C of the dissolved inorganic carbon (DIC) in the northern Gulf of Aqaba has decreased by about 0.44 per mil during the period 1979-2000. The average annual decrease is 0.021 per mil, which is similar to that observed globally. The delta13C values of planktonic foraminifera combined with organic matter delta13C from marine sediments are good indicators for reconstructing past changes in atmospheric CO2 concentrations from the northern Gulf of Aqaba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first radiocarbon chronology for sediments of the Argentine basin has been determined using accelerator mass spectrometer (AMS) analyses of 54 total organic carbon samples from four box and two piston cores collected from the downstream and upstream sides of two central Argentine Basin mudwaves. Throughout the Holocene, sediment from the geomorphically defined upstream side of each wave accumulated at rates of 30 to 105 cm/1000 years. Sediments from the downstream side of each wave accumulated at rates of 2 to 10 cm/1000 years in the late and early Holocene, while the mid Holocene is characterized by sedimentation rates less than 1.0 cm/1000 years. During the mid-Holocene, increased aridity reduced chemical weathering and the flow of the rivers draining to the continental shelf, causing a concomitant decrease in fine-grained terrigenous input to the basin as evidenced by decreased sedimentation rates, lower N/C ratios, and depleted delta13Corg values. It is estimated that all of the organic carbon deposited in the central basin during the mid-Holocene was of a marine origin. During the late and early Holocene, however, approximately 35% of the organic carbon deposited was of terrestrial origin. Bottom water flow speeds in the late Holocene were estimated using a lee-wave model and found to average 14 cm/s. This estimate is comparable to 10 cm/s mean and 15-20 cm/s maximum flow speeds measured by current meters deployed within the basin. Flow speeds in the Argentine Basin were 10% higher than today from 8000 to 2000 B.P., and are consistent with a general invigoration of thermohaline circulation that began between 9000 and 8000 B.P. It is proposed that the introduction of warm, salty Indian Ocean water into the northern North Atlantic at 9000 B.P. was the mechanism that provided the excess salt needed to stabilize the North Atlantic Deep Water thermohaline circulation system in its present mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 722 provides high resolution records of percent CaCO3, magnetic susceptibility, d18O, organic carbon, and coarse fraction for the past 3.4 m.y. from the crest of the Owen Ridge, northwestern Arabian Sea. Within this time interval, most of the carbonate percent variations can be attributed to terrigenous dilution and do not reflect changes in the carbonate system. From the late Pliocene to Present, the average rate of calcium carbonate accumulation increases from 1 to 3 g/cm**2/k.y. and the average accumulation of organic carbon decreases from 75 to 30 mg/cm**2/k.y. The carbonate component is more dissolved in the older interval. The long-term variations in carbonate accumulation may reflect a greater input of organic matter in the late Pliocene, which decomposes to produce CO2 and dissolve carbonate. Magnetic susceptibility and % noncarbonate (100 - CaCO3%) reflect changes in the amount of the lithogenic component in the sediments. The period of variation of lithogenic material is the same period as the original forcing of the regional summer monsoon, however, the timing matches global aridity patterns and global ice volume (sea level) changes. This preliminary analysis suggests that the high frequency variation of lithogenic material persists for at least the last 3.4 m.y. Within the last million years, calcium carbonate accumulation has a large amplitude signal that covaries with major changes in ice volume. Both calcium carbonate and noncarbonate (mostly terrigenous) accumulation are greatest during glacial stages. Interglacial intervals are characterized by low mass accumulation rates, increased foraminifer fragmentation, and increased opal concentration. The accumulation of organic carbon matches the high frequency changes in sedimentation rates. We attribute this high correlation to enhanced preservation of organic carbon by increased sedimentation rate. Of the three major biological components studied, only opal exhibits the variations expected for a biological productivity system forced by monsoonal upwelling driven by changes in northern hemisphere summer radiation.

Relevância:

30.00% 30.00%

Publicador: