104 resultados para oceanic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonate mineral precipitation in the upper oceanic crust during low-temperature, off-axis, hydrothermal circulation is investigated using new estimates of the bulk CO2 content of seven DSDP/ODP drill cores. In combination with previously published data these new data show: (i) the CO2 content of the upper ~ 300 m of the crust is substantially higher in Cretaceous than in Cenozoic crust and (ii) for any age of crust, there is substantially more CO2 in Atlantic (slow-spreading) than Pacific (intermediate- to fast-spreading) crust. Modelling the Sr-isotopic composition of the carbonates suggests that > 80% of carbonate mineral formation occurs within < 20 Myr of crust formation. This means that the higher CO2 content of Cretaceous crust reflects a secular change in the rate of CO2 uptake by the crust. Oxygen isotope derived estimates of carbonate mineral precipitation temperatures show that the average and minimum temperature of carbonate precipitation was ~10 °C higher temperatures in the Cretaceous than in the Cenozoic. This difference is consistent with previous estimates of secular change in bottom seawater temperature. Higher fluid temperature within the crust will have increased reaction rates potentially liberating more basaltic Ca and hence enhancing carbonate mineral precipitation. Additionally, if crustal fluid pH is controlled by fluid-rock reaction, the higher Ca content of the Cretaceous ocean will also have enhanced carbonate mineral precipitation. New estimates of the rate of CO2 uptake by the upper ocean crust during the Cenozoic are much lower than previous estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium-isotope ratios (d44/42Ca) were measured in carbonate-rich sedimentary sections deposited during Oceanic Anoxic Events 1a (Early Aptian) and 2 (Cenomanian-Turonian). In sections from Resolution Guyot, Mid-Pacific Mountains; Coppitella, Italy; and the English Chalk at Eastbourne and South Ferriby, UK, a negative excursion in d44/42Ca of ~0.20 per mil and ~0.10 per mil is observed for the two events. These d44/42Ca excursions occur at the same stratigraphic level as the carbon-isotope excursions that define the events, but do not correlate with evidence for carbonate dissolution or lithological changes. Diagenetic and temperature effects on the calcium-isotope ratios can be discounted, leaving changes in global seawater composition as the most probable explanation for d44/42Ca changes in four different carbonate sections. An oceanic box model with coupled strontium- and calcium-isotope systems indicates that a global weathering increase is likely to be the dominant driver of transient excursions in calcium-isotope ratios. The model suggests that contributions from hydrothermal activity and carbonate dissolution are too small and short-lived to affect the oceanic calcium reservoir measurably. A modelled increase in weathering flux, on the order of three times the modern flux, combined with increased hydrothermal activity due to formation of the Ontong-Java Plateau (OAE1a) and Caribbean Plateau (OAE2), can produce trends in both calcium and strontium isotopes that match the signals recorded in the carbonate sections. This study presents the first major-element record of a weathering response to Oceanic Anoxic Events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thick oceanic crust of the Caribbean plate appears to be the tectonized remnant of an eastern Pacific oceanic plateau that has been inserted between North and South America. The emplacement of the plateau into its present position has resulted in the obduction and exposure of its margins, providing an opportunity to study the age relations, internal structure and compositional features of the plateau. We present the results of 40Ar-39Ar radiometric dating, major-, trace-element, and isotopic compositions of basalts from some of the exposed sections as well as drill core basalt samples from Leg 15 of the Deep Sea Drilling Project. Five widely spaced, margin sections yielded ages ranging from 91 to 88 Ma. Less well-constrained radiometric ages from the drill cores, combined with the biostratigraphic age of surrounding sediments indicate a minimum crystallization age of ~90 Ma in the Venezuelan Basin. The synchroneity of ages across the region is consistent with a flood basalt origin for the bulk of the Caribbean plateau i.e., large volume, rapidly erupted, regionally extensive volcanism.. The ages and compositions are also consistent with plate reconstructions that place the Caribbean plateau in the vicinity of the Galápagos hotspot at its inception. The trace-element and isotopic compositions of the ~90 Ma rocks indicate a depleted mantle and an enriched, plume-like mantle were involved in melting to varying degrees across the plateau. Within the same region, a volumetrically secondary, but widespread magmatic event occurred at 76 Ma, as is evident in Curacao, western Colombia, Haiti, and at DSDP Site 152/ODP Site 1001 near the Hess Escarpment. Limited trace-element data indicate that this phase of magmatism was generally more depleted than the first. We speculate that magmatism may have resulted from upwelling of mantle, still hot from the 90 Ma event, during lithospheric extension attending gravitational collapse of the plateau, andror tectonic emplacement of the plateau between North and South America. Still younger volcanics are found in the Dominican Republic (69 Ma) and the Quepos Peninsula of Costa Rica (63 Ma). The latter occurrence conceivably formed over the Galápagos hotspot and subsequently accreted to the western edge of the plateau during subduction of the Farallon plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge (Feigenson et al., 2004, doi:10.1029/2003GC000621; Herrstom et al., 1995, doi:10.1130/0091-7613(1995)023<0617:VILCAW>2.3.CO;2; Abratis and Woerner, 2001) or eroded fore-arc complexes (Goss and Kay, 2006, doi:10.1029/2005GC001163) but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (~63-190 mm/yr) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm/yr). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.