36 resultados para obesity I and II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a species-specific Mg/Ca-calcification temperature calibration for Globorotalia inflata from a suite of 38 core top samples from the South Atlantic (from 8° to 49°S). G. inflata is a deep-dwelling planktonic foraminifer commonly occurring in subtropical to subpolar conditions, which qualifies it for reconstructions of the permanent thermocline. Apparent calcification depths and calcification temperatures were determined by comparing measured d18O with equilibrium d18O of calcite based on water column properties. Based on our core top samples, G. inflata apparent calcification depth is constant throughout the South Atlantic mid-latitudes with a depth of 350-400 m within the permanent thermocline. The resulting Mg/Ca-calcification temperature calibration is Mg/Ca = 0.72 +/-0.045/0.042 exp (0.076 +0.006 calcification 2 temperature) (r2 = 0.81) and covers the temperature range 3.1-16.5°C. We applied our Mg/Ca calibration to gravity core PS2495-3 from the Mid-Atlantic Ridge at ca. 41°S to test its validity by reconstructing a low-resolution record covering the last two glacial-interglacial cycles. Our paleotemperature record reveals large changes in temperature for Terminations I and II, when permanent thermocline temperature increased by as much as 8°C. The G. inflata paleotemperature record suggests that oceanic fronts repeatedly migrated over the location of site PS2495-3 during the last 160 kyr. This study shows the potential of G. inflata Mg/Ca to reconstruct paleotemperatures in the permanent thermocline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoondriven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoondriven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface water (d13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abundant and various diagenetic carbonates were recovered from a 1084-m-thick, Quaternary to lower Miocene section at ODP Site 799 in the Japan Sea. Petrographic, XRD, SEM, EDS-chemical, and isotopic analyses revealed wide variations in occurrence and textural relations and complex mineralogy and chemistry. Diagenetic carbonates include calcite, calcium-rich rhodochrosite, iron- and manganese-rich magnesite, iron- and manganese-rich dolomite and ankerite, and iron- and manganeserich lansfordite (hydrous Mg-carbonate). Rhodochrosite commonly occurs as small, solid nodules and semi-indurated, thin layers in bioturbated, mottled sediments of Units I and II (late Miocene to Quaternary). Lansfordite occurs as unindurated nodules and layers in Unit II (late Miocene and Pliocene), whereas magnesite forms indurated beds a few centimeters thick in slightly bioturbated-to-faintly laminated sediments of Unit III (middle and late Miocene). Some rhodochrosite nodules have dark-colored, pyritic cores, and some pyrite-rhodochrosite nodules are overgrown by and included within magnesite beds. Dolomite and ankerite tend to form thick beds (>10 cm) in bedded to laminated sediments of Units III, IV, and V (early to late Miocene). Calcite occurs sporadically throughout the Site 799 sediments. The d18O values of carbonates and the interstitial waters, and the measured geothermal gradient indicate that almost all of the Site 799 carbonates are not in isotopic equilibrium with the ambient waters, but were precipitated in the past when the sediments were at shallower depths. Depths of precipitation obtained from the d18O of carbonates span from 310 to 510 mbsf for magnesite and from 60 to 580 mbsf for dolomite-ankerite. Rhodochrosite and calcite are estimated to have formed within sediments at depths shallower than 80 mbsf. Diagenetic history in the Site 799 sediments have been determined primarily by the environment of deposition; in particular, by the oxidation-reduction state of the bottom waters and the alkalinity level of the interstitial waters. Under the well-oxygenated bottom-water conditions in the late Miocene and Pliocene, manganese initially accumulated on the seafloor as hydrogenous oxides and subsequently was mobilized and reprecipitated as rhodochrosite within the shallow sulfate-reduction, sub-oxic zone. Precipitation of lansfordite occurred in the near-surface sediments with abundant organic carbon and an extremely high alkalinity during the latest Miocene and Pliocene. The lansfordite was transformed to magnesite upon burial in the depth interval 310 to 510 mbsf. Dolomite first precipitated at shallow depths in Mn-poor, anoxic, moderately biocalcareous sediments of early to late Miocene. With increasing temperature and depth, the dolomite recrystallized and reequilibrated with ambient waters at depths below about 400 mbsf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Hole 990A penetrated 131 m of subaerially emplaced Paleocene flood basalts on the Southeast Greenland margin with a recovery of 74%. Shipboard P-wave velocity (Vp), density, and magnetic susceptibility were measured with 2- to 15-cm intervals on the core. Individual flow units were divided into four zones based on the observed petrophysical characteristics. From the top, these are Zone I (<7 m thick with a Vp of ~2.5 km/s), Zone II (3-5 m thick with a strongly increasing Vp from 2.5 to 5.5 km/s), Zone III (up to 20 m thick with a Vp of ~5.5-6.0 km/s), and Zone IV (<2 m thick with a strongly decreasing Vp from 6.0 to 2.5 km/s). Eighteen samples were selected from three of the fourteen penetrated basalt units for geochemical, petrological, and petrophysical studies focusing on the altered, low-velocity upper lava Zones I and II. Zone I is strongly altered to >50% clay minerals (smectite) and iron hydroxides, and the petrophysical properties are primarily determined by the clay properties. Zone II is intermediately altered with 5%-20% clay minerals, where the petrophysical properties are a function of both the degree of alteration and porosity variations. Shipboard and shore-based measurements of the same samples show that storage permanently lowers the elastic moduli of basalt from Zones I to III. This is related to the presence of even small quantities of swelling clays. The data show that alteration processes are important in determining the overall seismic properties of flood basalt constructions. The degree and depth of alteration is dependent on the primary lava flow emplacement structures and environment. Thus, the interplay of primary emplacement and secondary alteration structures determine the elastic properties of basalt piles. Rock property theories for sand-clay systems are further used to model the physical property variations in these altered crystalline rocks.