211 resultados para new age digitization
Resumo:
Acritarchs have received limited attention in palynological studies of the Cenozoic, although they have much potential both for refining Neogene and Quaternary stratigraphy, especially in mid- and high northern latitudes, and developing palaeoceanographical reconstructions. Here we formally describe and document the stratigraphical and palaeotemperature ranges (from foraminiferal Mg/Ca) of four new acritarch species: Cymatiosphaera? aegirii sp. nov., Cymatiosphaera? fensomei sp. nov., Cymatiosphaera? icenorum sp. nov. and Lavradosphaera canalis sp. nov. In reviewing the stratigraphical distributions of all species of the genus Lavradosphaera De Schepper & Head, 2008, we demonstrate their correlation potential between the North Atlantic and Bering Sea in the Pliocene. Additionally, Lavradosphaera lucifer De Schepper & Head, 2008 and Lavradosphaera canalis sp. nov., while not themselves overlapping stratigraphically, have morphological intermediates that do partially overlap and may represent an evolutionary trend consequent upon climate cooling in the Late Pliocene. Finally, we show that the highest abundances of the acritarchs presented here were living in the eastern North Atlantic, in surface-water temperatures not very different from today.
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.
Resumo:
The Tore Seamount is a circular, volcano-like feature 100 km in diameter with its summit at 2200 m water depth and a small, 5000 m deep basin in its interior. It is situated approximately 300 km west of Lisbon and is surrounded by deep abyssal plains. This site with a standard pelagic stratigraphy is the southernmost point where the so-called Heinrich events have so far been recorded. A succession of alternating interglacial/glacial periods reveals a stratigraphic record back to the beginning of isotopic stage 7 (225 kyr). Climatic changes are identifiable by coherent variations in colour, carbonate content and distribution of ice-rafted detritus in the carbonate-free fraction. Inputs of ice-rafted quartz are well defined. Characteristics in common with other sites showing Heinrich layers include a high terrigenous to biogenic ratio, a dramatic decrease in the accumulation rate of foraminifera shells, an increase in dolomite abundance and the occurrence of polar foraminiferal species indicating southwards penetration of cold waters which lead us to consider a wider southeastern extent of the North Atlantic ice-rafted detritus belt than hitherto. If the presently accepted position of the Polar Front is maintained, icebergs must have been swept southwards from the southern boundary of the pack ice in a current merging into the ancestral Canary Current, bringing ice-rafted material to the Tore Seamount. The coincidence of reddish-feldspar, probably derived from the northern Appalachian Triassic red facies, with the transparent quartz suggests at least a partial Labrador source for all the Heinrich layers here, including HL 3. In comparison to other sites in the entire North Atlantic, two exceptions stand out: the absence of HL 5 and the low detritus to biogenics ratio for HL 3. The simultaneous occurrence of these two types of ice-rafted minerals is a new piece in the puzzle of the origin of Heinrich layers.
Resumo:
Depositional environments, stratigraphic relations, and 35 new AMS 14C dates at Cape Shpindler, Yugorski Peninsula, help constrain the late Pleistocene glacial and environmental history of the southern Kara Sea region. Fifteen- to fifty-meter-high coastal exposures reveal a complex package of shallow marine, fluvial, glacial, and postglacial deposits, and are documented here in a 19-km-long cross-section and eight vertical sections. The shallow marine (Unit A), estuarine or prodeltaic (Unit B), and fluvio-deltaic (Unit C) deposits contain an interglacial molluscan fauna, yield radiocarbon dates greater than 40 ka, and may correspond with a regional sea-level highstand during the Eemian. These units are overlain by a diamicton (Unit D), and are pervasively deformed by folds and low- to high-angle faults into a stacked glaciotectonic accretionary complex. The diamicton (Unit D) is a subglacial till, and associated massive ground ice with deformed debris bands (Unit E) appears to be relict glacier ice. Glaciotectonic structures document both southward- and northward-directed glacier movement. Above the till and associated glaciotectonic horizons lies 0- to 11-m-thick postglacial deposits of peatland, eolian, fluvial, and primarily lacustrine origin (Unit F). The postglacial deposits yield radiocarbon ages of 12.8 to 0.8 ka. Thus, at least one regional glaciation is prominently represented in the stratigraphy, and occurred probably after the Eemian but before 12.8 ka. We infer that the bulk of the glacial record corresponds with southward advance by an early Weichselian Kara Sea Ice Sheet, in agreement with other recently documented, regional records from Yamal Peninsula and the Pechora Basin. The timing and source of northward-directed glacier ice are less well constrained. Across the broad expanse of the Eurasian Arctic, Quaternary stratigraphy is still sparsely documented. The new data from Cape Shpindler fill a spatial gap in paleoenvironmental research.
Resumo:
Stable isotope measurements on the planktonic foraminifer Globigerinoides ruber (white) have been carried out on a number of selected deep-seas sediment cores from the South Lau and Norlh Fiji Basins. The d18O-curves show good correlation with the inter-ocean oraphic correlation composite d18O-record of the standard reference section (Prell et al. 1986), which, in combination with the chronostratigraphic classifications of Herterich & Sarnthein (1984, modified) and Imbrie et al. 1984), allows a detailed dating of the sedimentary sequences. The deepest layers in core no. 119 (southern Lau Basin) could be assigned to Isotope Stage 24. Measurements made on bulk carbonate in two cores show a much higher glacial-interglacial amplitude, allowing the general identification of the conventional oxygen isotope stages. The d13C-values of the benthic foraminifer Cibicidoides wuellerstorfi show progressively lighter values northwards reflecting an increasing contribution of the isotopically lighter CO2 from the remineralisation of organic matter during the general northward movement of the deep water masses. Cyclicities in the sedimentation rates were observed in core nos. 117 and 119 (both southern Lau Basin) where the interglacials exhibit higher levels than the glacials. Calculated new or export paleoproductivity show that the glacials had higher productivity in the euphotic zone. From the oxygen isotope stratigraphy, the five ash layers in core nos. 117 and 119 could be dated as about 530 ka B.P. in Stage 14, 695 ka B.P. in Stage 18, 775 ka B.P. in Stage 21, 790 ka B.P. and 825 ka B.P. in Stage 22. Carbonate dissolution occurred during stages 5, 8 and 10 to 12.
Resumo:
Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.
Resumo:
A tentative age scale (EDC1) for the last 45 kyr is established for the new 788 m EPICA Dome C ice core using a simple ice flow model. The age of volcanic eruptions, the end of the Younger Dryas event, and the estimated depth and age of elevated 10Be, about 41 kyr ago were used to calibrate the model parameters. The uncertainty of EDC1 is estimated to ±10 yr for 0 to 700 yr BP, up to ±200 yr back to 10 kyr BP, and up to ±2 kyr back to 41 kyr BP. The age of the air in the bubbles is calculated with a firn densification model. In the Holocene the air is about 2000 yr younger than the ice and about 5500 yr during the last glacial maximum.
Resumo:
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.