491 resultados para mud wedge
Resumo:
The Helgoland mud area in the German Bight is one of the very few sediment depocenters in the North Sea. Despite the shallowness of the setting (<30 m water depth), its topmost sediments provide a continuous and high-resolution record allowing the reconstruction of regional paleoenvironmental conditions for the time since ~400 a.d. The record reveals a marked shift in sedimentation around 1250 a.d., when average sedimentation rates drop from >13 to ~1.6 mm/year. Among a number of major environmental changes in this region during the Middle Ages, the disintegration of the island of Helgoland appears to be the most likely factor which caused the very high sedimentation rates prior to 1250 a.d. According to historical maps, Helgoland used to be substantially bigger at around 800 a.d. than today. After the shift in sedimentation, a continuous and highly resolved paleoenvironmental record reflects natural events, such as regional storm-flood activity, as well as human impacts at work at local to global scales, on sedimentation in the Helgoland mud area.
Resumo:
Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2-C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between -62 and -66 per mill PDB in d13C, and between -185 and -209 per mill SMOW in dD, indicating a mainly biogenic origin with an admixture of thermogenic gas.
Resumo:
Products of two mud volcanoes from the distal part of the Mediterranean Ridge accretionary complex have been investigated regarding their B, C, and O stable isotope signatures. The mud breccias have been divided into mud matrix, lithified clasts, biogenic deposits, and authigenic cements and crusts related to fluid flow and cementation. Isotope geochemistry is used to evaluate the depth of mobilization of each phase in the subduction zone. B contents and isotope ratios of the mud and mud clasts show a general trend of B enrichment and decreasing d11B values with increasing consolidation (i.e., depth). However, the majority of the clast and matrix samples relate to moderate depths of mobilization within the wedge (1-2 km below seafloor). The carbonate cements of most of these clasts as well as the authigenic crusts, however, provide evidence for a deep fluid influence, probably associated with the décollement at 5-6 km depth. This interpretation is supported by d13C ratios of the crust, which indicate precipitation of C from thermogenic methane, and by the d11B ratios of pore-water samples of mud-breccia drill cores. Clams (Vesicomya sp.) living adjacent to fluid vents have d11B and d18O values corresponding to brines known in the area, which acted as the parent solution for shell precipitation. Such brines are most likely Miocene pore waters trapped at deep levels within the backstop to the accretionary prism, probably prior to desiccation of the Mediterranean in the Messinian (6-5 Ma). Combining all results, deep fluid circulation and expulsion are identified as the main processes triggering mud liquefaction and extrusion, whereas brines contribute only locally. Given the high B contents, mud extrusion has to be considered a major backflux mechanism of B into the hydrosphere.
Resumo:
Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (<2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.
Resumo:
Depending on the temperature and the extent of diagenetic alteration of fluid chemistry, fluid flow at convergent margins may transfer important quantities of heat and mass between the crust and seawater, thereby influencing global mass, isotopic and heat budgets. In the North Aoba Basin, an intra-arc basin located at the New Hebrides Island Arc, alteration of volcanic ash to clay minerals and zeolites forms a CaCl2 brine, perhaps in less than 1 to 3 m.y. The brine results from an exchange of Ca for Na, K, and Mg, and an increase in Cl concentrations to a maximum of 1241 mM. The Cl increase is partly due to the transfer of H2O from the pore fluid into authigenic minerals, but water mass balances, d18O-Cl correlations, and Br/Cl ratios suggest that there is a source of Cl in the sediments. Concentration profiles indicate that Li is transferred from the fluid to solid phase at depths <300 meters below seafloor (mbsf), but at greater depths it is transferred from the solid to fluid phase, at temperatures possibly as low as 25°C. In the accretionary wedge extensive fluid flow appears to be confined to highly faulted regions. Although Cl concentrations less than seawater value are common at convergent margins, the New Hebrides margin contains little low-Cl fluid. Br/Cl ratios suggest the low-Cl fluid is from dilution, and d18O values indicate the water may be derived from mineral dehydration and mixing with meteoric water. The New Hebrides margin exhibits few surface manifestations of venting (e.g., sulfide-oxidizing benthic biological communities, carbonate crusts, mud volcanoes) and thus fluid fluxes may be smaller than at many other margins.