37 resultados para mole cricket


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future anthropogenic emissions of CO2 and the resulting ocean acidification may have severe consequences for marine calcifying organisms and ecosystems. Marine calcifiers depositing calcitic hard parts that contain significant concentrations of magnesium, i.e. Mg-calcite, and calcifying organisms living in high latitude and/or cold-water environments are at immediate risk to ocean acidification and decreasing seawater carbonate saturation because they are currently immersed in seawater that is just slightly supersaturated with respect to the carbonate phases they secrete. Under the present rate of CO2 emissions, model calculations show that high latitude ocean waters could reach undersaturation with respect to aragonite in just a few decades. Thus, before this happens these waters will be undersaturated with respect to Mg-calcite minerals of higher solubility than that of aragonite. Similarly, tropical surface seawater could become undersaturated with respect to Mg-calcite minerals containing ?12 mole percent (mol%) MgCO3 during this century. As a result of these changes in surface seawater chemistry and further penetration of anthropogenic CO2 into the ocean interior, we suggest that (1) the magnesium content of calcitic hard parts will decrease in many ocean environments, (2) the relative proportion of calcifiers depositing stable carbonate minerals, such as calcite and low Mg-calcite, will increase and (3) the average magnesium content of carbonate sediments will decrease. Furthermore, the highest latitude and deepest depth at which cold-water corals and other calcifiers currently exist will move towards lower latitudes and shallower depth, respectively. These changes suggest that anthropogenic emissions of CO2 may be currently pushing the oceans towards an episode characteristic of a 'calcite sea.'

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonates, principally calcium-rich dolomites, with extremely variable isotopic compositions were recovered in organic-rich marine sediments during Leg 63 drilling off southern California and Baja California. These carbonates occur as thin layers in fine-grained, diatomaceous sediments and siliceous rocks, mostly deposited during the Neogene. A combination of textural, geochemical, and isotopic evidence indicates these dolomites formed as cements and precipitates in shallow subsurface zones of high alkalinity spawned by abundant CO2 and methane production during progressive microbial decay of organic matter. Depths and approximate temperatures of formation estimated from oxygen isotopes are 87 to 658 meters and 10°C to 50°C, respectively. Within any sedimentary section, dolomites may form simultaneously at several depths or at different times within the same interval. Highly variable carbon isotopes (-30 to +16 per mil) reflect the isotopic reservoir in which the carbonates formed. Oxidation of organic matter through microbial reduction of sulfate at shallow depths favors light-carbon carbonates such as those at Sites 468 and 471; heavy-carbon carbonates at Site 467 most likely formed below this zone where HC**12O3**- is preferentially removed by reduction of CO2 to methane during methanogenesis. An important controlling factor is the sedimentation rate, which dictates both the preservation of organic matter on the sea floor and depth distribution of subsurface zones of organic-matter decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabasic rocks were recovered at Sites 469 and 471 on IPOD/DSDP Leg 63. The diabasic rocks are composed mainly of Plagioclase, clinopyroxene, and low-temperature alteration products. In addition to these phases, a considerable amount of primary biotite and lesser colorless amphibole are observed in some of the Site 471 diabases. Major and trace element data suggest that these rocks are tholeiitic; however, their highly altered nature obscures their petrologic affinity with the DSDP Leg 63 tholeiitic basalts and others from the nearby Pacific ocean floor. It is likely that the Site 469 and 471 diabasic rocks represent products of off-ridge intrusive activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted d13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from -20 to -35 per mil over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in d13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chem¬istry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.