149 resultados para migration of rhizobia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium and iron concentration data from the anoxic Cariaco Basin, off the Venezuelan coast, can be used to infer variations in the hydrological cycle over northern South America during the past 14,000 years with subdecadal resolution. Following a dry Younger Dryas, a period of increased precipitation and riverine discharge occurred during the Holocene 'thermal maximum'. Since ~5400 years ago, a trend toward drier conditions is evident from the data, with high-amplitude fluctuations and precipitation minima during the time interval 3800 to 2800 years ago and during the 'Little Ice Age'. These regional changes in precipitation are best explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ), potentially driven by Pacific-based climate variability. The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7-19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6-7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large population of the colonial pelagic tunicate Pyrosoma atlanticum occurred in April 1991 in offshore waters of the Ligurian Sea (Northwestern Mediterranean). The high numbers of colonies caught allowed their vertical distribution and diel migration in the 0-965 m water column to be described as a function of their size. Daytime depths and amplitudes of the migration were correlated with colony size. The amplitude of the migration ranged from 90 m for 3-mm-length colonies to 760 m for 51-mm-length colonies, with a mean amplitude of 410 m for the whole population, all sizes pooled. The results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycle relative to noon, and that migration of the population was not cohesive. For example, the larger the colonies, the later after sunset they reached the upper layers during their upward migration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thick sections of Pliocene and Pleistocene biosiliceous clay and ooze were recovered by the Hydraulic Piston Corer (I-IPC) at three northwest Pacific sites (DSDP Sites 578, 579, and 580). They contain a well-preserved paleomagnetic record which made it possible to evaluate diatom events used in low and high latitudes in the transitional region of the northwest Pacific. Equatorial Pacific events are usually isochronons between the equatorial and subarctic regions. However, species which have short ranges in low latitudes tend to have diachronous first and last appearances in higher latitudes. All subarctic North Pacific datum species are present in the sediments at three sites which lie north and south across the subarctic front, but their ranges become shorter in southern regions. They do not penetrate into the equatorial region. Spatial distributions of these events are influenced by the paleo-position of the subarctic front. The migration of species from their home-area outwards, in the form of the first appearance, is related to the fluctuations of the subarctic front. The last appearance of species is a response to the change of the surface water temperature that is beyond the limit of tolerance of the species, or an unstable oceanic environment due to major change of climate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and I I ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North Atlantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34-29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31-32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites. The composition of the calcareous nannofossil assemblage permits identification of three intervals (I-III). Intervals I and III, correlated to MIS 34-32 and MIS 30-29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian-Atlantic ocean exchange.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The barium distribution in sediments and pore fluids from five sites drilled in the Japan Sea have been used to illustrate the geochemical behavior of this element as it pertains paleoproductivity reconstructions, diagenetic remobilization, and barite precipitation in authigenic fronts. Sites where sulfate is depleted in the pore fluids also show high concentrations of dissolved barium, reflecting dissolution of biogenic barite. The high rate of sedimentation at Sites 798 and 799 results in a rapid sulfate depletion, which in turn leads to barite dissolution and reprecipitation in diagenetic fronts. The dissolved barium distribution at these sites has been used to quantify the rate of barite dissolution; we estimate a first-order rate constant for barite dissolution to be 2*10**-6/s at Site 799 and 2*10**-7/s at Site 798. Authigenic barite has been documented in sediments from Site 799 at 323 meters below seafloor by scanning electron microscopy and X-ray fluorescence analysis. These results indicate barite precipitation in a diagenetic front near the zone of sulfate depletion by upward migration of dissolved barium and downward diffusion of sulfate. Barite precipitation has also been inferred at Sites 796 and 798 based on sedimentary and dissolved barium distributions. Sulfate is not depleted in the pore fluids of Site 794. The lack of diagenetic remobilization of biogenic barium at this site preserves the high barium signal associated with the high-productivity sequences deposited during the late Miocene to Pliocene. Significantly, the organic carbon distribution does not indicate high accumulation rates during the periods of high opal and barium deposition. Instead, higher organic carbon accumulations are recorded in the Quaternary and middle Miocene sequences; intervals that are also characterized by deposition of siliciclastic turbidites. The presence of a terrestrial component in the organic carbon record renders barium a more useful indicator than organic carbon for paleoproductivity reconstructions in this marginal sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Size measurements of the calcareous nannofossil taxon Discoaster multiradiatus were carried out across the Paleocene-Eocene Thermal Maximum (PETM) in Ocean Drilling Program Holes 690B (Maud Rise, Weddell Sea) and 1209B (Shatsky Rise, Pacific Ocean). Morphometric investigations show that D. multiradiatus specimens are generally larger at ODP Site 1209 than at ODP Site 690. A limited increase in size of D. multiradiatus is recorded at ODP Site 1209, whereas significant enlargements characterize ODP Site 690. Preservation is comparable at both sites: nannofossils are moderately preserved with some evidence of etching/overgrowth in the PETM interval. Yet, D. multiradiatus variations do not correlate with preservation state and morphometric data most likely represent primary signals rather than diagenetic artifacts. There is a direct relationship between D. multiradiatus size and paleotemperatures: largest specimens are coeval with global warming associated with the PETM, inferred to result from excess atmospheric CO2 due to (partial) oxidation of massive quantities of methane. Size increases and largest specimens of D. multiradiatus occur at different stratigraphic levels within PETM at ODP Sites 690 and 1209. A marked shift in diameter size was observed at the onset and peak of the Carbon Isotopic Excursion (CIE) at ODP Site 690, but only at the end of CIE and initial recovery interval at ODP Site 1209. This diachroneity is puzzling, but indeed correlates well with reconstructed changes in surface and thermocline water masses temperature and salinity in the PETM interval at low and high latitudes. The presumed high concentrations of carbon dioxide seem to have not influenced the morphometry of D. multiradiatus. The major size increase of D. multiradiatus in the CIE of ODP Site 690 could represent the migration of larger-sized allochtonus specimens that moved from peri-equatorial/subtropical areas to higher latitudes during the warmest interval of the PETM, although no direct evidence of distinct populations/subpopulations has been obtained from the frequency diagrams. As a result, we infer that D. multiradiatus is a proxy of water masses stratification and might be used for deriving temperature-salinity-nutrient conditions in the mixed layer and thermocline and their dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.