265 resultados para mapping system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000 m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200 m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1 km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multibeam data were measured during R/V SONNE cruise SO202 (INOPEX) along track lines of 6938 NM total length in the North Pacific and Bering Sea during transits and stationary work. Starting from Hokkaido (Japan) data were achieved east of the Kuril-Kamchatka Trench and south of the Aleutian Trench. The track crosses the Bowers Ridge, the continental margin of Alaska and the Umnak Plateau in the Bering Sea. Further data were gained in the North Pacific in the area of the Patton Seamounts, Gibson Seamount, Hess Rise and Shatsky Rise. The multibeam sonar system Simrad EM 120 from Kongsberg was operated using 191 beams and an aperture angle of 90° to 140° due to particular conditions. The refraction correction was achieved utilizing 6 CTD profiles measured during the cruise and one from cruise SO201. The quality of data might be reduced during bad weather periods. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.