33 resultados para low-frequency fatigue
Resumo:
Morphological and U-Pb isotope studies on sedimentary zircons reflect the orogenic evolution of their former host rocks. The orogenic history of detrital zircons from the Trinity Peninsula Formation (TPF) defines the former geological surrounding of the sedimentation basin of the TPF. Same few weil rounded, polycyclic zircons of Precambrian age and Cambrian overprint give hints for an old cratonic source rock. Because of their very low frequency compared with euhedral types, the contribution of an cratonic shield area to the bulk of the sedimentary debris is neglectable low. Euhedral zircons of granitoid origin and Carboniferous age indicate a derivation from an area of widespread Carboniferous intrusions. Except for southern South America and unsurveyed regions in the Antarctic Peninsula itself, no region could deliver zircons with a Carboniferous age record. The only acceptable explanation for the origin of these zircons is a position of the Antarctic Peninsula during the sedimentation of the TPF approximately southwest of southern South America.
Resumo:
One of the most enigmatic features of Cenozoic long-term climate evolution is the long-lasting positive carbon-isotope excursion or "Monterey Excursion", which started during a period of global warmth after 16.9 Ma and ended at not, vert, similar 13.5 Ma, approximately 400 kyr after major expansion of the Antarctic ice-sheet. We present high-resolution (1-9 kyr) astronomically-tuned climate proxy records in two complete sedimentary successions from the northwestern and southeastern Pacific (ODP Sites 1146 and 1237), which shed new light on the middle Miocene carbon-isotope excursion and associated climatic transition over the interval 17.1-12.7 Ma. We recognize three distinct climate phases with different imprints of orbital variations into the climatic signals (1146 and 1237 d18O, d13C; 1237 XRF Fe, fraction > 63 µm): (1) climate optimum prior to 14.7 Ma characterized by minimum ice volume and prominent 100 and 400 kyr variability, (2) long-term cooling from 14.7 to 13.9 Ma, principally driven by obliquity and culminating with rapid cryosphere expansion and global cooling at the onset of the last and most pronounced d13C increase, (3) "Icehouse" mode after 13.9 Ma with distinct 100 kyr variability and improved ventilation of the deep Pacific. The "Monterey" carbon-isotope excursion (16.9-13.5 Ma) consists overall of nine 400 kyr cycles, which show high coherence with the long eccentricity period. Superposed on these low-frequency oscillations are high-frequency variations (100 kyr), which closely track the amplitude modulation of the short eccentricity period. In contrast to d13C, the d18O signal additionally shows significant power in the 41 kyr band, and the 1.2 Myr amplitude modulation of the obliquity cycle is clearly imprinted in the 1146 d18O signal. Our results suggest that eccentricity was a prime pacemaker of middle Miocene climate evolution through the modulation of long-term carbon budgets and that obliquity-paced changes in high-latitude seasonality favored the transition into the "Icehouse" climate.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.