37 resultados para long lived
Resumo:
Breeding individuals enter an emergency life-history stage when their body reserves reach a minimum threshold. Consequently, they redirect current activity toward survival, leading to egg abandonment in birds. Corticosterone (CORT) is known to promote this stage. How and to what extent CORT triggers egg abandonment when breeding is associated with prolonged fasting, however, requires further investigation. We manipulated free-living male Adelie penguins with CORT-pellets before their laying period. We then examined their behavioral response with respect to nest abandonment in parallel with their prolactin levels (regulating parental care), and the subsequent effects of treatment on breeding success in relieved birds. Exogenous CORT triggered nest abandonment in 60% of the treated penguins -14 days after treatment and induced a concomitant decline in prolactin levels. Interestingly, prolactin levels in treated penguins that did not abandon their nest were higher at the point of implantation and also after being relieved by females, when compared with abandoning penguins. Among successful birds, the treatment did not affect the number of chicks, nor the brood mass. Our results show the involvement of CORT in the decision-making process regarding egg abandonment in Adelie penguins when incubation is associated with a natural long fast. However, we suggest that CORT alone is not sufficient to trigger nest abandonment but that 1) prolactin levels need to reach a low threshold value, and 2) a rise in proteolysis (i.e. utilization of protein as main energy substrate) seems also to be required.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Resumo:
Recent rapid changes of air temperature on the western side of the Antarctic Peninsula results in increased sediment discharge and ice scouring frequencies in coastal regions. These changes are bound to especially affect slow growing, sessile filter feeders such as the Antarctic bivalve, Laternula elliptica, a long-lived and abundant key species with circumpolar distribution. We investigated the effect of sedimentation and ice scouring on small/young and large/old individuals at two closely located stations, distinctly influenced by both types of disturbance. Small individuals dealt better with disturbance in terms of their respiratory response to sediment exposure, reburrowing ability, and survival after injury, compared to larger animals. At the more disturbed station L. elliptica population density was lower, but larger animals reburrowed faster after iceberg disturbance and reduced their metabolic rate under strong sediment coverage, compared to larger animals of the less disturbed station, indicating that an adaptation or learning response to both types of disturbance may be possible. Smaller individuals were not influenced. Laternula elliptica seems capable of coping with the rapidly changing environmental conditions. Due to a decrease in population density and mean population lifespan, L. elliptica could however lose its key role in the bentho-pelagic carbon flux in areas of high sediment deposition.
Resumo:
In the study, we establish centennial records of anthropogenic lead pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by means of lead deposited in shells of the long-lived bivalve Arctica islandica. Due to local oceanographic and geological conditions we conclude that the lead concentrations in the Icelandic shell reflect natural influxes of lead into Icelandic waters. In comparison, the lead profile of the US shell is clearly driven by anthropogenic lead emissions transported from the continent to the ocean by westerly surface winds. Lead concentrations in the European North Sea shell, in contrast, are dominantly driven by local lead sources resulting in a much less conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the three shells are driven by different influxes of lead, and yet, all support the applicability of Pb/Ca analyses of A. islandica shells to reconstruct location specific anthropogenic lead pollution.
Resumo:
Coccolithophores are a key phytoplankton group that exhibit remarkable diversity in their biology, ecology, and calcitic exoskeletons (coccospheres). An understanding of the physiological processes that underpin coccosphere architecture is essential for maximizing the information that can be retrieved from their extensive fossil record. Using culturing experiments on four modern species from three long-lived families, we investigate how coccosphere architecture responds to population shifts from rapid (exponential) to slowed (stationary) growth phases as nutrients become depleted. These experiments reveal statistical differences in cell size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell. Although the exact numbers are species-specific, these growth-phase shifts in coccosphere geometry are common to four different coccolithophore families (Calcidiscaceae, Coccolithaceae, Isochrysidaceae, Helicosphaeraceae), demonstrating that this is a core physiological response to nutrient depletion across a representative diversity of this phytoplankton group. Polarised light microscopy was used for all coccosphere geometry measurements.
Resumo:
A multicentennial and absolutely-dated shell-based chronology for the marine environment of the North Icelandic Shelf has been constructed using annual growth increments in the shell of the long-lived bivalve clam Arctica islandica. The region from which the shells were collected is close to the North Atlantic Polar Front and is highly sensitive to the varying influences of Atlantic and Arctic water masses. A strong common environmental signal is apparent in the increment widths, and although the correlations between the growth increment indices and regional sea surface temperatures are significant at the 95% confidence level, they are low (r ~ 0.2), indicating that a more complex combination of environmental forcings is driving growth. Remarkable longevities of individual animals are apparent in the increment-width series used in the chronology, with several animals having lifetimes in excess of 300 years and one, at 507 years, being the longest-lived non-colonial animal so far reported whose age at death can be accurately determined. The sample depth is at least three shells after AD 1175, and the time series has been extended back to AD 649 with a sample depth of one or two by the addition of two further series, thus providing a 1357-year archive of dated shell material. The statistical and spectral characteristics of the chronology are investigated by using two different methods of removing the age-related trend in shell growth. Comparison with other proxy archives from the same region reveals several similarities in variability on multidecadal timescales, particularly during the period surrounding the transition from the Medieval Climate Anomaly to the Little Ice Age.
Resumo:
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.