395 resultados para linear combination of bulk band (LCBB)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed oxygen and carbon isotope study of the upper Maestrichtian-lower Paleocene section of Hole 516F from the Rio Grande Rise reveals that large isotopic anomalies are clearly associated with the Cretaceous/Tertiary boundary. Across the Cretaceous/Tertiary boundary, the total carbonate content reaches a maximum exceeding 80% before rapidly decreasing in covariance with the carbon isotope record. This strong covariance between d13C and percent CaCO3 suggests either a significant reduction in primary productivity or a rapid shoaling of the calcium carbonate compensation depth. Importantly, the d13C record 2 Ma after the Cretaceous/Tertiary boundary remained depleted in 13C by at least 0.5 per mil compared to the late Maestrichtian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a brief, descriptive, sedimentological background for the chapters on hydraulic piston core Site 480 in this symposium, and supplements data given in the site chapter for Sites 479-480 (this volume, Pt. 1). Sediments are composed primarily of planktonic diatoms, with minor numbers of silicoflagellates, radiolarians, and varying amounts of both benthic and planktonic foraminifers, along with a large terrigenous component of olive brown, silty clay. The section contains meter-thick intervals of finely laminated facies alternating with nonlaminated zones. A few paleoenvironmental events are documented within the generally uniform sequence by sporadic occurrences of thin turbidites, phosphatic concretions, fish debris concentrations, an ash layer, and a thin layer of diagenetic dolomite. The distribution of nonlaminated and laminated zones is attributed to fluctuations of bottom-water oxygen content caused by variations in circulation, fertility, and productivity. Homogeneous sections are interpreted as coinciding with cooler climatic periods, whereas laminated sections seem to correspond to upwelling conditions during drier periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum and vanadium were analysed in 9 scediment cores recovered from the continental slope and rise off NW Africa. Additionall chemical and sedimentological parameters as well as isotope stage boundaries were available for the same core profiles from other investigations. Molybdenum, ranging between <1 and 10 ppm, occurs in two associateions, either with organic carbon and sulphides in sediments with reducing conditions or with Mn oxides in oxidized near-surface core sections. Highest values (between 4 and 10 ppm Mo) are found in sulphide-rich core sections deposited during glacial times in a core from 200 m water depth. The possibility of anoxic near-bottom water conditions prevailing at thhis site during certain glacial intervals is discussed. In oxidized near-surface core sections, the diagenetic mobility of Mo becomes evident from strong Mo enrichment together with Mn oxides (values up to 4 ppm Mo). This enrichment is probably due to coprecipitation and/or adsorption of Mo from interstitial water to the diagenetically forming Mn oxides. The close relation between Mo and Corg results in strongly covarying sedimentation rates in both components reaching up to 10 times the rates in glacial compared to interglacial core sections. Vanadium (values between 20 and 100 ppm) does not show clear relations to climate and near-bottom or sediment milieu. It occurs mainly bound to the fine grained terrigenous fraction, associated with aluminium silicates (clay minerals) and iron oxides. Additionally positive covariation of vanadium with phosphorus in most core profiles suggest that some V may be bound to phosphates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.