38 resultados para light-scattering center super-resolution near-field structure (LSC-Super-RENS) nonlinearity
Resumo:
Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.
Resumo:
We generated a high resolution (~8 ky) benthic record from a West Pacific marginal basin to investigate the detailed structure and spectral characteristics of deep water isotope fluctuations during the middle Miocene. The benthic record from ODP Site 1146 allows unprecedented resolution of the structure of the middle Miocene delta13C excursion, as well as tighter control on the chronology of climatic events. Spectral analysis of the variance in the delta18O and delta13C records from ODP Site 1146 reveals spectral power concentrated in the eccentricity band (400-, ~100-ky) over the time interval between 13 and 17 Ma. The amplitude evolution in the 400-ky band is strikingly similar to that of the long eccentricity in Laskar's solution. There is an abrupt switch to the obliquity band in the delta18O record at -14.9 Ma, suggesting a shift in the ocean/climate response to orbital forcing (from low latitude eccentricity to high latitude obliquity forcing). The obliquity signal is pervasive in the delta18O record until -13.9 Ma, when a sharp increase in delta18O values indicates a major climatic transition. Comparison of delta18O and delta13C profiles from DSDP Site 588 (SW Pacific Ocean), ODP Site 761 (E Indian Ocean) and ODP Site 1146 (South China Sea) reveals significantly cooler deep water in the NE Indian Ocean throughout the middle Miocene and a restricted deep water exchange between the Pacific Ocean and Indian Ocean.