74 resultados para land equivalent ratio
Resumo:
The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.
(Table 4) Rare earth element abundances of representative Ferrar samples from Northern Victoria Land
Resumo:
Sulphur isotope analyses are an important tool for the study of the natural sulphur cycle. On the northern hemisphere such studies of the atmospheric part of the cycle are practically impossible due to the high emission rate of anthropogenic sulphur. Merely in remote areas of the world such as the Antarctic 34S analyses can be used to identify the various sulphur sources (sea spray, biogenic und volcanic sources). We report here results of 34S measurements on sulphates from recent atmospheric precipitations (snow), lake waters, and salt efflorescences sampled in the Schirmacher Oasis and the Gruber Mountains, central Dronning Maud Land, East Antarctica. By plotting the delta 34S of precipitation versus % sea-spray sulphate the isotopic composition of the excess sulphate (which is probably of marine-biogenic origin) is extrapolated to be +4 per mil. Lake water sulphate and atmospheric precipitations have a comparable sulphur isotope composition (about +5 per mil). The analyzed secondary sulphates from the salt efflorescences, mainly gypsum and a few water-soluble sulphatcs (hexahydrite, epsomite, burkeite. and pickeringite), vary in their isotopic composition between about -12 and +8 per mil. This wide scatter is probably due to chemical weathering of primary sulphides having different delta 34S values in the substratum.