35 resultados para human activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk Ca and Ti contents and Ti/Ca ratio of sediment core GeoB11804-4, measured by ICP-OES after HF/HNO3/H2O2 microwave pressure digestion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current models of the global carbon cycle lack natural mechanisms to explain known large, transient shifts in past records of the stable carbon-isotope ratio (delta13C) of carbon reservoirs. The injection into the atmosphere of ~1,200-2,000 gigatons of carbon, as methane from the decomposition of sedimentary methane hydrates, has been proposed to explain a delta13C anomaly associated with high-latitude warming and changes in marine and terrestrial biota near the Palaeocene-Eocene boundary, about 55 million years ago. These events may thus be considered as a natural 'experiment' on the effects of transient greenhouse warming. Here we use physical, chemical and spectral analyses of a sediment core from the western North Atlantic Ocean to show that two-thirds of the carbon-isotope anomaly occurred within no more than a few thousand years, indicating that carbon was catastrophically released into the ocean and atmosphere. Both the delta13C anomaly and biotic changes began between 54.93 and 54.98 million years ago, and are synchronous in oceans and on land. The longevity of the delta13C anomaly suggests that the residence time of carbon in the Palaeocene global carbon cycle was ~120 thousand years, which is similar to the modelled response after a massive input of methane. Our results suggest that large natural perturbations to the global carbon cycle have occurred in the past-probably by abrupt failure of sedimentary carbon reservoirs-at rates that are similar to those induced today by human activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO3. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.