36 resultados para high-molecular-weight glutenin subunit(HMW-GS)
Resumo:
Sub-micron marine aerosol particles (PM1) were collected during the MERIAN cruise MSM 18/3 between 22 June 2011 and 21 July 2011 from the Cape Verde island Sao Vicente to Gabun crossing the tropical Atlantic Ocean and passing equatorial upwelling areas. According to air mass origin and chemical composition of the aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin, in the second part was marine and slightly biomass burning influenced (increasing tendency) and in the in last part of the cruise, approaching the African mainland, biomass burning influences became dominant. Generally aerosols were dominated by sulfate (caverage = 1.99 µg/m**3) and ammonium ions (caverage = 0.72 µg/m**3) that are well correlated and slightly increasing along the cruise. High concentrations of water insoluble organic carbon (WISOC) averaging 0.51 µg/m**3 were found probably attributed to the high oceanic productivity in this region. Water soluble organic carbon (WSOC) was strongly increasing along the cruise from concentrations of 0.26 µg/m**3 in the mainly marine influenced part to concentrations up to 3.3 µg/m**3 that are probably caused by biomass burning influences. Major organic constituents were oxalic acid, methansulfonic acid (MSA) and aliphatic amines. MSA concentrations were quite constant along the cruise (caverage = 43 ng/m**3). While aliphatic amines were more abundant in the first mainly marine influenced part with concentrations of about 20 ng/m**3, oxalic acid showed the opposite pattern with average concentrations of 12 ng/m**3 in the marine and 158 ng/m**3 in the biomass burning influenced part. The alpha dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng/m**3 range and followed oxalic acid closely. MSA and aliphatic amines accounted for biogenic marine (secondary) aerosol constituents whereas oxalic acid and the alpha dicarbonyl compounds were believed to result mainly from biomass burning. N-alkane concentrations increased along the cruise from 0.81 to 4.66 ng/m**3, PAHs and hopanes were abundant in the last part of the cruise (caverage of PAHs = 0.13 ng/m**3, caverage of hopanes = 0.19 ng/m**3). Levoglucosan was identified in several samples of the last part of the cruise in concentrations around 2 ng/m**3, pointing to (aged) biomass burning influences. The investigated organic compounds could explain 9.5% of WSOC in the mainly marine influenced part (dominating compounds: aliphatic amines and MSA) and 2.7% of WSOC in the biomass burning influenced part (dominating compound: oxalic acid) of the cruise.
Resumo:
Cenozoic and Mesozoic sediments ranging in age from Pleistocene to Early Jurassic/late Triassic were recovered on DSDP Leg 79, off Morocco at Sites 544 to 547 in front of the Mazagan Plateau. The main zone of oil genesis should be reached at Site 547 within the Jurassic section. Organic material of marine origin with good petroleum potential characterizes the late Eocene slumps of Site 547 and originates from reworked organic matter of Cretaceous origin. Organic enrichment also occurs at Site 545 during the middle to late Albian period. Since the organic matter appears to be autochthonous, reducing environments of deposition are inferred. In the other Cretaceous deposits, variably altered organic matter of the same origin predominates. Finally, a transect including Site 370 off the Agadir Canyon, is studied: detrital organic matter and reducing environments of deposition were more developed during Albian time for Site 370 than for Site 545.
Resumo:
The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.