191 resultados para glacial advance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO3]2- variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Antarctic Circumpolar Current is key to the mixing and ventilation of the world's oceans. This current flows from west to east between about 45° and 70° S connecting the Atlantic, Pacific and Indian oceans, and is driven by westerly winds and buoyancy forcing. High levels of productivity in the current regulate atmospheric CO2 concentrations. Reconstructions of the current during the last glacial period suggest that flow speeds were faster or similar to present, and it is uncertain whether the strength and position of the westerly winds changed. Here we reconstruct Antarctic Circumpolar Current bottom speeds through the constricting Drake Passage and Scotia Sea during the Last Glacial Maximum and Holocene based on the mean grain size of sortable silt from a suite of sediment cores. We find essentially no change in bottom flow speeds through the region, and, given that the momentum imparted by winds, and modulated by sea-ice cover, is balanced by the interaction of these flows with the seabed, this argues against substantial changes in wind stress. However, glacial flow speeds in the sea-ice zone south of 56° S were significantly slower than present, whereas flow in the north was faster, but not significantly so. We suggest that slower flow over the rough topography south of 56° S may have reduced diapycnal mixing in this region during the last glacial period, possibly reducing the diapycnal contribution to the Southern Ocean overturning circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the results of a study aimed at providing radiometric age control on glacial events in the Weddell Sea during the late Quaternary. Sediment cores from the eastern continental shelf, where the East Antarctic ice sheet was grounded, have recovered glacial-marine sediments resting on tills and the latter deposits predate the isotope stage 2 last glacial maximum. Sediment cores from the continental slope and rise sampled a prominent ice-rafted debris layer, and radiocarbon ages indicate that this ice-rafting event took place prior to 26 000 yr B.P. Thus, the combined data indicate that significant deglaciation of the Weddell Sea continental shelf took place prior to the last glacial maximum. Our data also suggest that the ice masses that border the Weddell Sea are more extensive than they were during the previous glacial minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although scientific evidence prior to that from ODP Leg 119 indicates the presence of an ice sheet on East Antarctica by at least the earliest Oligocene, the question as to the size and stability of that initial ice sheet is still contested. Current hypotheses include (1) the presence of a small ice sheet in the earliest Oligocene with stepwise growth during the Neogene, (2) the presence of a continental-sized ice sheet in the late middle Eocene with no major evidence of subsequent deglaciation, and (3) the presence of glacial ice in the earliest Oligocene with a major ice sheet during the mid-Oligocene, followed by growth and decay of several ice sheets with characteristics similar to the temperate ice sheets of the Pleistocene of North America but with changes over a longer time scale (millions of years vs. 100,000 yr). Principal results from Leg 119 suggest the presence of significant late middle and late Eocene glaciation in East Antarctica and the presence of a continental-size ice sheet in East Antarctica during the earliest Oligocene. Although the Leg 119 results provide only glimpses of the Neogene glacial history of East Antarctica, they do provide evidence of fluctuations in the extent of the ice sheet and the waxing and waning of glaciers across the Prydz Bay shelf during the later part of the late Miocene and Pliocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series of alkenone unsaturation indices gathered along the California margin reveal large (4° to 8°C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating recently available remote sensing data, we investigated the mass balance for all individual tributary glacial basins of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. On the basis of the ice flow information derived from SAR interferometry and ICESat laser altimetry, we have determined the spatial configuration of eight tributary drainage basins of the Lambert-Amery glacial system. By combining the coherence information from SAR interferometry and the texture information from SAR and MODIS images, we have interpreted and refined the grounding line position. We calculated ice volume flux of each tributary glacial basin based on the ice velocity field derived from Radarsat three-pass interferometry together with ice thickness data interpolated from Australian and Russian airborne radio echo sounding (RES) surveys and inferred from ICESat laser altimetry data. Our analysis reveals that three tributary basins have a significant net positive imbalance, while five other subbasins are slightly positive or close to zero balance. Overall, in contrast to previous studies, we find that the grounded ice in Lambert Glacier-Amery Ice Shelf system has a positive mass imbalance of 22.9 ± 4.4 Gt/a. The net basal melting for the entire Amery Ice Shelf is estimated to be 27.0 ± 7.0 Gt/a. The melting rate decreases rapidly from the grounding zone to the ice shelf front. Significant basal refreezing is detected in the downstream section of the ice shelf. The mass balance estimates for both the grounded ice sheet and the ice shelf mass differ substantially from other recent estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global aerosol/climate model ECHAM5-HAM is used in order to investigate the dust cycle for four interglacial and one glacial climate conditions. The 20-year time-slices are the pre-industrial control (CTRL), mid-Holocene (6000 years BP), last glacial inception (115000 years BP), Eemian (126000 years BP) and Last Glacial Maximum (LGM) (21000 years BP) time intervals. The study is focused on the Antarctic region. The model is able to reproduce the magnitude order of dust deposition globally for the pre-industial and LGM climates. Correlation coefficient of the natural logarithm of the observed and modeled values is 0.78 for the CTRL and 0.81 for the LGM. For the pre-industrial simulation the model overestimates observed values in Antarctica by a factor of about 2-3 due to overestimation of the Australian dust source and too high wet deposition in the Antarctica interior. In the LGM, the model underestimates dust deposition in eastern Antarctica by a factor of about 4-5 due to underestimation of the South American dust source. More records are needed to validate dust deposition for the past interglacial time-slices. The modeled results show that dust deposition in Antarctica in the past interglacial time-slices is higher than in the CTRL simulation. The largest increase of dust deposition in Antarctica is simulated for the LGM, showing about 10-fold increase compared to CTRL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratigraphy and pollen analysis of the deposits show that this is a lake basin which during the Late-glacial period was partially filled by lake clays and muds. One of the main interests of the pollen diagrams lies in the division of zone i into three suh-zones showing a minor climatic oscillation which seems to be comparable with the Boiling oscillation of northern Europe. During Post-glacial time the greater part of the deposits has been muds but on one side a fen developed which in early zone VI was sufficiently dry to support birch and pine wood. Later in zone VI the water table must have risen slightly because the fen peats were gradually covered by a rather oxidized mud suggesting that the fen became replaced by a shallow swamp with a widely fluctuating water table. In the Atlantic period the basin was reflooded and the more central deposits were covered by a layer of mud. Later in the central region, swamp and eventually Sphagnum bog communities developed. The whole area is now covered by a sihy soil and forms a flat meadowland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1119 is located at water depth 395 m near the subtropical front (STF; here represented by the Southland Front), just downslope from the shelf edge of eastern South Island, New Zealand. The upper 86.19 metres composite depth (mcd) of Site 1119 sediment was deposited at an average sedimentation rate of 34 cm/kyr during Marine Isotope Stages (MIS) 1-8 (0-252 ka), and is underlain across a ~25 kyr intra-MIS 8 unconformity by MIS 8.5-11 (277-367 ka) and older sediment deposited at ~14 cm/kyr. A time scale is assigned to Site 1119 using radiocarbon dates for the period back to ~39 ka, and, prior to then, by matching its climatic record with that of the Vostok ice core, which it closely resembles. Four palaeoceanographic proxy measures for surface water masses vary together with the sandy-muddy, glacial-interglacial (G/I) cyclicity at the site. Interglacial intervals are characterised by heavy delta13C, high colour reflectance (a proxy for carbonate content), low Q-ray (a proxy for clay content) and light delta18O; conversely, glacial intervals exhibit light delta13C, low reflectance, high Q-ray and heavy delta18O signatures. Early interglacial intervals are represented by silty clays with 10-105-cm-thick beds of sharp-based (Chondrites-burrowed), shelly, graded, fine sand. The sands are rich in foraminifera, and were deposited distant from the shoreline under the influence of longitudinal flow in relatively deep water. Glacial intervals comprise mostly micaceous silty clay, though with some thin (2-10 cm thick) sands present also at peak cold periods, and contain the cold-water scallop Zygochlamys delicatula. Interglacial sandy intervals are characterised by relatively low sedimentation rates of 5-32 cm/kyr; cold climate intervals MIS 10, 6 and 2 have successively higher sedimentation rates of 45, 69 and 140 cm/kyr. Counter-intuitively,and forced by the bathymetric control of a laterally-moving shoreline during G/I and I/G transitions, the 1119 core records a southeasterly (seaward) movement of the STF during early glacial periods, accompanied by the incursion of subtropical water (STW) above the site, and northwesterly (landward) movement during late glacial and interglacial times, resulting in a dominant influence then of subantarctic surface water (SAW). The history of passage of these different water masses at the site is clearly delineated by their characteristic delta13C values. The intervals of thin, graded sands-muds which occur within MIS 2-3, 6, 7.4 and 10 indicate the onset at times of peak cold of intermittent bottom currents caused by strengthened and expanded frontal flows along the STF, which at such times lay near Site 1119 in close proximity to seaward-encroaching subantarctic waters within the Bounty gyre. In common with other nearby Southern Hemisphere records, the cold period which represents the last glacial maximum lasted between ~23-18 ka at Site 1119, during which time the STF and Subantarctic Front (SAF) probably merged into a single intense frontal zone around the head of the adjacent Bounty Trough.