49 resultados para functional group diversity
Resumo:
The normal boiling point is a fundamental thermo-physical property, which is important in describing the transition between the vapor and liquid phases. Reliable method which can predict it is of great importance, especially for compounds where there are no experimental data available. In this work, an improved group contribution method, which is second order method, for determination of the normal boiling point of organic compounds based on the Joback functional first order groups with some changes and added some other functional groups was developed by using experimental data for 632 organic components. It could distinguish most of structural isomerism and stereoisomerism, which including the structural, cis- and trans- isomers of organic compounds. First and second order contributions for hydrocarbons and hydrocarbon derivatives containing carbon, hydrogen, oxygen, nitrogen, sulfur, fluorine, chlorine and bromine atoms, are given. The fminsearch mathematical approach from MATLAB software is used in this study to select an optimal collection of functional groups (65 functional groups) and subsequently to develop the model. This is a direct search method that uses the simplex search method of Lagarias et al. The results of the new method are compared to the several currently used methods and are shown to be far more accurate and reliable. The average absolute deviation of normal boiling point predictions for 632 organic compounds is 4.4350 K; and the average absolute relative deviation is 1.1047 %, which is of adequate accuracy for many practical applications.
Resumo:
Data on amounts of various functional groups, i.e. aldehyde, acid, ester, alcohol, thiol and aromatic groups in several fractions of low-polarity dissolved organic matter are presented. An assumption that this organic matter is part of the lipid fraction is not confirmed. Amount of aromatic compounds in waters of the Northwest Indian Ocean is estimated to be about 1000 times higher than quantity of aromatic hydrocarbons discharged into the ocean each year in petroleum and petroleum products.
Resumo:
Information on the functional traits was gathered for the most commonly-sampled copepod species of the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length (mm), trophic group (Omnivore/Carnivore/Herbivore/Detritivore), feeding type (Cruise-feeding/Filter-feeding/Ambush-feeding), spawning strategy (Sac-spawner/Free-spawner), diel vertical migration (Non-migrant/Weak-migrant/Strong-migrant) and vertical habitat (prefered depth layer). Using cluster analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles.
Resumo:
This data set contains measurements of plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) in 2002 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded twice a year: in late June and just before biomass harvest during peak standing biomass in late August. For 3 target plant individuals (if present) per sown species from the central area of the plots, vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) were measured as stretched height. Provided are the indivdiual measurements and the mean over the measured plants per plot (in June) and the mean over the measured plants per plot (in August).
Resumo:
This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.
Resumo:
This data set contains measurements of species-specific plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) measured for all sown species separetly in 2002. Data was recorded in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded two times: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
This data set contains measurements of plant height: vegetative height (heighest leaf) in 2004 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2004, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For plants at 3 random points in a control area at the margin of each experimental, vegetative height (heighest leaf) was measured as standing height (without stretching the plant). Provided are the individual measurements and the mean over the measured plants.
Resumo:
1. Dominant plant functional types (PFTs) are expected to be primary determinants of communities of other above- and below-ground organisms. Here, we report the effects of the experimental removal of different PFTs on arbuscular mycorrhizal fungi (AMF) communities in a shrubland ecosystem in central Argentina. 2. On the basis of the biomass-ratio hypothesis and plant resource use strategy theory, we expected the effect of removal of PFTs on AMF colonization and spores to be proportional to the biomass removed and to be stronger when more conservative PFTs were removed. The treatments applied were: undisturbed control (no plant removed), disturbed control (mechanical disturbance), no shrub (removal of deciduous shrubs), no perennial forb (removal of perennial forbs), no graminoid (removal of graminoids) and no annual forb (removal of annual forbs). AMF colonization was assessed after 5,17 and 29 months. Total density of AMF spores, richness and evenness of morpho-taxa, and AMF functional groups were quantified after 5,17,29,36 and 39 months. 3. Five months after the initial removal we found a significant reduction in total AMF colonization in all plots subjected to PFT removals and in the disturbed control plots, as compared with the undisturbed controls. This effect disappeared afterwards and no subsequent effect on total colonization and colonization by arbuscules was observed. In contrast, a significant increase in colonization by vesicles was observed in months 17 and 29, mainly in no graminoid plots. In general, treatments did not significantly affect AMF spores in the soil. On the other hand, no annual forb promoted transient (12-18 months) higher ammonia availability, and no shrub promoted lower nitrate availability in the longer term (24-28 months). 4. Synthesis. Our experiment, the first to investigate the effects of the removal of different PFTs on AMF communities in natural ecosystems, indicates that AMF communities are resilient to changes in the soil and in the functional composition of vegetation. Furthermore, it does not provide consistent evidence in support of the biomass-ratio hypothesis or differential trait-based direct or indirect effects of different PFTs on AMF in this particular system.
Resumo:
This data set contains measurements of plant height: vegetative height (length of the main axis) in 2003 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2003, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For 30 target plant individuals harvested at 10 cm distances along a 5 m transect in a control area at the margin of each experimental plot, vegetative height (length of the main axis) was measured as the length of the main axis of the plant. Provided is the mean over the measured plants per plot.
Resumo:
Species diversity is the most common variable reported in recent ecological research articles. Ecological processes, however, are driven by individuals. High abundances make arthropods, despite their small body sizes, important actors in food webs. We sampled arthropod assemblages in disturbed and undisturbed vegetation types along an elevation gradient of from 800 to 4550 m a.s.l. on the southern slopes of Mt. Kilimanjaro, Tanzania. In our analysis, we focused on 13 different lineages of arthropods that represented three major functional groups: predators, herbivores and decomposers. The samples were collected with pitfall traps on 59 (of 60) study sites within the framework of the KiLi-project (https://www.kilimanjaro.biozentrum.uni-wuerzburg.de/). In each of twelve vegetation types five sampling sites of 50 m x 50 m were established with a minimum distance of 300 m between the individual sites. On each of the 59 sites, ten pitfall traps were evenly spaced along two 50 m transects, with a distance of 10 m between individual traps and 20 m between the parallel transects. Pitfall traps were filled with 100-200 ml of a mixture of ethylenglycol and water (1:1) with a drop of liquid soap to break surface tension. Traps were exposed at 2 to 5 sampling events for seven days in both the dry and wet seasons between May 2011 and October 2012. The reported abundances per lineage were averaged twice: first over all samples per site for each sampling event (3-10 analyzed samples per site and sampling event), and then averaged over all sampling events for each site.
(Table 5) Oxygen-bearing functional groups in humic acids in bottom sediments of the Western Pacific
Resumo:
This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2007 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2007, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 0.5m on a 3m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.