65 resultados para exploding in oil layers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that microscopic algae dominate in source material of organic matter of black shales, and admixture of residues of organisms and terrestrial humic material is contained. The main direction of source material transformation during syngenesis and sedimentogenesis is associated with jellofication resulting to formation of organic matter of significantly sapropelic type. Low reflectance of vitrinite and alginite from organic matter refer to the primary and secondary lignite stages of its carbonification. Significantly sapropel type of organic matter and low stage of carbonification are reliable criteria for assigning black shales to the category of potential oil source strata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gut dissection of fixed individuals from samples collected during Cruise 6 of R/V Vityaz-2 in April-May 1984 was used to study feeding of Sagitta setosa in the layers of daytime plankton accumulation at the lower boundary of the oxycline. The principal food was copepodite stage V of Calanus and females of Calanus and Pseudocalanus. Analysis of daytime and night data with reference to length of migratory alterations of Sagitta populations and gut passage time indicates that they feed actively in the layers of day¬time plankton accumulations. Total food consumption during time spent in the subsurface layers ranged from 0.025-0.097 cal/indiv. in 12 h, equivalent to 37-143% of their metabolic energy expenditure. Over the course of 12 h Sagitta population consumes 0.3-5% and 0.5-6% of population of stage V copepodites and females of Calanus and Pseudocalanus females, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology of experimental simulation of state of spent nuclear fuel that occurs on the sea floor due to some catastrophes or dumping is developed. Data on long-term (more than 2000 days) experiments on estimation of 85Kr and 137Cs release rate from spent nuclear fuel (fragments of irradiated UO2 pellets) were firstly obtained; these estimates prove correctness of a hypothesis offered by us in early 1990s concerning to earlier 85Kr release (by one order of magnitude higher than that of 137Cs) as compared to other fission fragments in case of loss of integrity of fuel containment as a result of corrosion on the sea floor. A method and technique of onboard 85Kr and 137Cs sampling and extraction (as well as sampling of tritium, product of triple 235U fission) and their radiometric analysis at coastal laboratories are developed. Priority data on 85Kr background in bottom layers of the Barents and Kara Seas and 137Cs and 3H in these seas (state of 2003) are presented. Models necessary for estimation of dilution of fission products of spent nuclear fuel and their transport on the floor in accident and dumping regions are developed. An experimental method for examination of state of spent nuclear fuel on the sea floor (one expedition each 2-3 years) by 85Kr release into environment (a leak tracer) is proposed; this release is an indicator of destruction of fuel containment and release of products of spent nuclear fuel in case of 235UO2 corrosion in sea water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical distribution of common zooplankton species is examined on the base of two series of layer-by-layer net catches down to depth of 3400 m. Differences between the series are significant for most species only near the surface, whereas in deeper layers character of distribution remains the same. Great depths in the Sea of Japan are populated most actively by species performing intensive daily migrations, and less actively by species continuously confined to a definite depth range. Different character of nutrition of the animals apparently determines extent of utilization of deep layers, which are usual for the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "CoMSBlack92" dataset is based on samples collected in the summer of 1992 along the Bulgarian coast including coastal and open sea areas. The whole dataset is composed of 79 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at standard depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 ?m. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m**3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial mats develop in a wide range of aquatic habitats, such as geothermal hot springs, hypersaline ponds, marine cold seeps or hydrothermal vents. The Nakabusa hot spring is located in the Nagano Prefecture, Japan (36.3875N, 137.75E), dense olive-green microbial mats develop in regions where the slightly alkaline, sulfidic effluent has cooled to 65°C. The microbial community of such mats was analyzed by focusing on the diversity, as well as the in situ distribution and function of bacteria involved in sulfur cycling. Microbial mat samples were kept in sterile plastic tubes (for molecular analysis) or glass bottles completely filled with hot spring water to avoid oxidation. Samples were transferred to the laboratory on ice and used for physiological experiments within 8h. Quantification of cell biovolumes was carried out based on images of mat sections hybridized with Sulfurihydrogenibium- and Chloroflexi-specific probes, and stained with DAPI. In situ hybridizations (CARD-FISH) of thin matsections showed a heterogeneous vertical distribution of Sulfurihydrogenibium and Chloroflexus. Sulfurihydrogenibium dominated near the mat surface (50% of the total mat biovolume), while Chloroflexus dominated in deeper layers (up to 64% of the total mat biovolume).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical distribution of zooplankton biomass from the surface to bottom layers (3400 m) is examined. Material was collected layer by layer by a BR 113/140 net at 41°59' N and 133°37' E on July 2 and 3, 1970. Quantity of plankton below 1000 m was found to be much less than at corresponding depths in the adjacent regions of the ocean. This impoverishment is due to absence of oceanic bathypelagic animals in deep layers of the Sea of Japan. Absence of specialized predators (plankton-feeders) deep in the Sea of Japan results in underconsumption of interzonal animals that sink to great depths. Upon dying they should reach the floor in larger quantities than in the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinations were made of contents of carbon, lipids, nitrogen and, in some material, protein, carbohydrates, elementary composition of lipids and their spectral composition in total plankton samples from different depths (from the surface to 3000 m) and in several species of macroplanktonic deep-water crustaceans (decapods and mysids) living at different depths. Content of organic carbon and lipids in total plankton is high (40 to 60 and 35 to 70% of dry weight, respectively) and it does not change significantly with increasing depth. Deep-water macroplanktonic crustaceans have extremely high content of organic carbon and lipids, but there are no significant differences in this respect between species that live in different layers of the deep-water zone. Elementary composition of lipids indicates that they are highly saturated, with a marked predominance of unsaponifiable fraction, about 20% of which consists of methane hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tagged phosphorus was used to measure principal indices of mineral phosphorus variations in the euphotic zone of the East Pacific, i.e. total rate of uptake of phosphate phosphorus by microplankton (A_t), fraction consumed by phytoplankton (A_p/A_t), and turnover time (T). A_t reached its greatest values (150-280 ng/l/hour) in the upwelling zone of the Peru traverse, where development of phytoplankton was induced by upwelling. In other areas of this traverse values were 40-80 ng/l/hour in surface layers. In less productive waters on two other profiles (off Central America and California), values were lower, between 20 and 40 ng/l. On the vertical profile maxima of A_t were found at the upper boundary of the thermocline. Turnover time of PO4 phosphorus (T) in zones of phytoplankton abundance was very short, between 1.5 and 4 days. At most other stations it was 10-40 days, increasing to 100-200 days or longer at the lower boundary of the euphotic zone. In areas of phytoplankton abundance it accounted for 60-80% of total uptake of PO4 phosphorus. But in zones of elevated bacterial abundance, A_p/A_t fell to 20-40%. Data indicating lack of correlation between PO4 phosphorus and productivity are presented. It is emphasized that the above measures of PO4 phosphorus dynamics can be used for obtaining measures of functional condition and successional phase of marine plankton communities.