243 resultados para experimental chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports for the first time upon the effects of increasing CO2 concentrations on a natural phytoplankton assemblage in a tropical estuary (the Godavari River Estuary in India). Two short-term (5-day) bottle experiments were conducted (with and without nutrient addition) during the pre-monsoon season when the partial pressure of CO2 in the surface water is quite low. The results reveal that the concentrations of total chlorophyll, the phytoplankton growth rate, the concentrations of particulate organic matter, the photosynthetic oxygen evolution rates, and the total bacterial count were higher under elevated CO2 treatments, as compared to ambient conditions (control). delta13C of particulate organic matter (POM) varied inversely with respect to CO2, indicating a clear signature of higher CO2 influx under the elevated CO2 levels. Whereas, delta13CPOM in the controls indicated the existence of an active bicarbonate transport system under limited CO2 supply. A considerable change in phytoplankton community structure was noticed, with marker pigment analysis by HPLC revealing that cyanobacteria were dominant over diatoms as CO2 concentrations increased. A mass balance calculation indicated that insufficient nutrients (N, P and Si) might have inhibited diatomgrowth compared to cyanobacteria, regardless of increased CO2 supply. The present study suggests that CO2 concentration and nutrient supply could have significant effects on phytoplankton physiology and community composition for natural phytoplankton communities in this region. However, this work was conducted during a non-discharge period (nutrient-limited conditions) and the responses of phytoplankton to increasing CO2 might not necessarily be the same during other seasons with high physicochemical variability. Further investigation is therefore needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Only about half of all the CO_2 that has been produced by the burning of fossil fuels now remains in the atmosphere. The CO_2 "missing" from the atmosphere is the subject of an important debate. It was thought that the great majority of the missing CO_2 has invaded the ocean, for this system naturally acts as a giant chemical regulator of the atmosphere. Although it is clear that ocean processes have a major role in the regulation of the carbon dioxide content of the atmosphere through air-sea exchange processes, recent studies of the oceanic carbon cycle and air-sea interaction indicate that oceanic carbon is in a quasi-steady state via the system of biological and physical processes in the ocean interior. It is difficult to determine whether the ocean has the capacity to take up the increasing air-born CO_2 released by human activities over the past five or six decades. To understand this enigma, we need a better understanding of the natural variability of the oceanic carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 µatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I tested the hypothesis that the effects of high pCO2 and temperature on massive Porites spp. (Scleractinia) are modified by heterotrophic feeding (zooplanktivory). Small colonies of massive Porites spp. from the back reef of Moorea, French Polynesia, were incubated for 1 month under combinations of temperature (29.3°C vs. 25.6°C), pCO2 (41.6 vs. 81.5 Pa), and feeding regimes (none vs. ad libitum access to live Artemia spp.), with the response assessed using calcification and biomass. Area-normalized calcification was unaffected by pCO2, temperature, and the interaction between the two, although it increased 40% with feeding. Biomass increased 35% with feeding and tended to be higher at 25.6°C compared to 29.3°C, and as a result, biomass-normalized calcification statistically was unaffected by feeding, but was depressed 12-17% by high pCO2, with the effect accentuated at 25.6°C. These results show that massive Porites spp. has the capacity to resist the effects on calcification of 1 month exposure to 81.5 Pa pCO2 through heterotrophy and changes in biomass. Area-normalized calcification is sustained at high pCO2 by a greater biomass with a reduced biomass-normalized rate of calcification. This mechanism may play a role in determining the extent to which corals can resist the long-term effects of ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that acidified seawater can have indirect biological effects by disrupting the capability of organisms to express induced defences, hence, increasing their vulnerability to predation. The intertidal gastropod Littorina littorea produced thicker shells in the presence of predation (crab) cues but this response was disrupted at low seawater pH. This response was accompanied by a marked depression in metabolic rate (hypometabolism) under the joint stress of high predation risk and reduced pH. However, snails in this treatment apparently compensated for a lack of morphological defence, by increasing their avoidance behaviour, which, in turn, could affect their interactions with other organisms. Together, these findings suggest that biological effects from ocean acidification may be complex and extend beyond simple direct effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages.