72 resultados para event log


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During CO2 storage operations in mature oilfields or saline aquifers it is desirable to trace the movement of injected CO2 for verification and safety purposes. We demonstrate the successful use of carbon isotope abundance ratios for tracing the movement of CO2 injected at the Cardium CO2 Storage Monitoring project in Alberta between 2005 and 2007. Injected CO2 had a d13C value of -4.6±1.1 per mil that was more than 10 per mil higher than the carbon isotope ratios of casing gas CO2 prior to CO2 injection with average d13C values ranging from -15.9 to -23.5 per mil. After commencement of CO2 injection, d13C values of casing gas CO2 increased in all observation wells towards those of the injected CO2 consistent with a two-source end-member mixing model. At four wells located in a NE-SW trend with respect to the injection wells, breakthrough of injected CO2 was registered chemically (>50 mol % CO2) and isotopically 1-6 months after commencement of CO2 injection resulting in cumulative CO2 fluxes exceeding 100000 m**3 during the observation period. At four other wells, casing gas CO2 contents remained below 5 mol % resulting in low cumulative CO2 fluxes (<2000 m**3) throughout the entire observation period, but carbon isotope ratios indicated contributions between <30 and 80% of injected CO2. Therefore, we conclude that monitoring the movement of CO2 in the injection reservoir with geochemical and isotopic techniques is an effective approach to determine plume expansion and to identify potential preferential flow paths provided that the isotopic composition of injected CO2 is constant and distinct from that of baseline CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shipboard laboratory index property data, shore-based consolidation tests, and in-situ stress and pore-pressure measurements are used in this study to constrain the stress conditions at ODP Site 808, Nankai Trough. Results of these tests are presented along with additional interpretations of porosity rebound and permeability. The sediment at Site 808 is highly affected by excess fluid pressures throughout the sediment column. Excess fluid pressure is severe below the major fault boundary, the décollement. The in-situ measurement of lateral stresses, which are shallow in the sediment section, confirms that the principal stress direction is rotated from a "normal" basin-type condition where the principal stress direction is vertical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r >= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (>= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.