126 resultados para dry chemistry method
Resumo:
Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 > 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
Resumo:
The terrigenous fraction of sediments from a deep-sea sediment core recovered from the northwestern Western Australian continental slope offshore North West Cape, SE Indian Ocean, reveals a history of Western Australian climate throughout the last 550 ka. End-member modelling of a data set of grain-size distributions (n = 438) of the terrigenous sediment fraction allows to interpret the record in terms of aeolian and fluvial sediment deposition, both related to palaeo-environmental conditions in the North West Cape area. The data set can be best described by two aeolian end members and one fluvial one. Changes in the ratio of the two aeolian end members over the fluvial one are interpreted as aridity variations in northwestern Western Australia. These grain-size data are compared with bulk geochemical data obtained by XRF scans of the core. Log-ratios of the elements Zr/Fe and Ti/Ca, which indicate a terrigenous origin, corroborate the grain-size data. We postulate that the mid- to late Quaternary near North West Cape climate was relatively arid during the glacial and relatively humid during the interglacial stages, owing to meridional shifts in the atmospheric circulation system. Opposite to published palaeo-environmental records from the same latitude (20°S) offshore Chile and offshore Namibia, the Australian aridity record does not show the typical southern hemisphere climate variability of humid glacials and dry interglacials, which we interpret to be the result of the relatively large land mass of the Australian continent, which emphasises a strong monsoonal climatic system.
Resumo:
Ocean Drilling Program inorganic geochemistry procedures routinely overlook more than 99% of the sediment column. Present and past biogeochemical reactions alter the sediment record; however, most of these reaction zones are bypassed by the normal methods where samples are collected every 30 m. A new approach to increase resolution was introduced during Leg 119. Ten milliliters of sediment provided interstitial-water samples for ammonia, silica, sulfate, magnesium, and calcium analyses. The new method introduced some systematic differences in concentrations, as well as some decrease in precision. A number of advantages, however, may warrant using the method in some instances. In cases where routine interstitial-water data showed anomalous results, core sections were retrieved from the storage facility and resampled. The new high-resolution procedure was used to provide water samples in cases were water contents were low and routine squeezing could not recover pore water.
Resumo:
Sulfur speciation in bottom sediments from the area of the Peru upwelling has been studied. Data on sulfur contents in different compounds (sulfide, elemental, sulfate, pyritic and organic), water content, Eh, and organic carbon content in the bottom sediments have been obtained. The bottom sediments from the area are characterized by high content of organic carbon and low contents of total and reactive iron; this is typical for bottom sediments from ocean upwelling areas. Intense process of sulfate reduction occurs in the bottom sediments of the area, and accumulation of reduced sulfur compounds derivated from bacterial hydrogen sulfide does not exceed previously known values for other regions of the ocean.
Resumo:
Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm). Shell and somatic growth, calcification, oxygen consumption and excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6-20 and 10-34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (+60%) at 243 Pa. excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss.
Resumo:
The impact of ocean acidification caused by the increasing atmospheric CO2 has been studied in marine calcifiers, including hermatypic corals. However, the effect of elevated pCO2 on the early developmental life-cycle stage of corals has been little studied. In this study, we reared polyps of Acropora digitifera in seawater at pHT 6.55, 7.31, 7.64, 7.77, and 8.03, controlled by CO2 bubbling. We measured the dry weights of polyp skeletons after the 40-d experiment to investigate the relationship between the seawater aragonite saturation state and polyp growth. In addition, we measured skeletal U/Ca ratio to estimate their pH dependence. Skeletal weights of coral polyps increased with the aragonite saturation state and reached an apparent saturation plateau above pH 7.77. U/Ca ratios had a strong inverse relationship with pH and a negligible relationship with skeletal growth rate (polyp weight), suggesting that skeletal U/Ca could be useful for reconstructing paleo-pH.
Resumo:
The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.
Resumo:
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight/m**2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2/m**2/d, and there was a slight net dissolution of CaCO3 (0.8 mmol/m**2/d). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2/m**2/d), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.
Resumo:
The track of the cruise, and the location of the different stations cover a large range of water masses, many of which take part in the exchange across the Greenland-Scotland Ridge, and of importance for the biogeochemical fluxes in the region. These water masses are of very different origins, which can be observed in the concentration of the different biogeochemical parameters. The concentrations are a result of the combination of the physical and biogeochemical environment in each formation region, and the processes acting on the water masses as they are transported away from the formation areas. The aim of the biogeochemistry measurements was to achieve a better understanding of the strength and variability of the biological carbon pump in the North Atlantic and Nordic Seas.
Resumo:
The X-ray fluorescence (XRF) core scanner provides bulk-sediment chemistry data measured nondestructively at the split core sediment surface. Although this method is widely accepted, there is little known about the effects of physical properties such as density and water content on XRF core scanner data. Comparison of XRF scanner measurements from the sediment surface and dry powder samples of sediment core GeoB7920 indicates strongly reduced element intensities for the lighter elements Al and Si. We relate the lower element intensities of the measurements taken at the sediment surface to the amount of water in the sample volume analyzed by the XRF core scanner. The heavier elements K, Ca, Ti, and Fe remain relatively unaffected by the variation of any physical property within sediment core GeoB7920. Additionally, we successfully use the elemental intensity of Cl as a proxy for the seawater content in the sample volume analyzed by the XRF core scanner. This enables the establishment of a correction function for the elements Al and Si that corrects for the radiation absorption of the water content in sediment core GeoB7920 off Cape Blanc, NW Africa.
Resumo:
I tested the hypothesis that the effects of high pCO2 and temperature on massive Porites spp. (Scleractinia) are modified by heterotrophic feeding (zooplanktivory). Small colonies of massive Porites spp. from the back reef of Moorea, French Polynesia, were incubated for 1 month under combinations of temperature (29.3°C vs. 25.6°C), pCO2 (41.6 vs. 81.5 Pa), and feeding regimes (none vs. ad libitum access to live Artemia spp.), with the response assessed using calcification and biomass. Area-normalized calcification was unaffected by pCO2, temperature, and the interaction between the two, although it increased 40% with feeding. Biomass increased 35% with feeding and tended to be higher at 25.6°C compared to 29.3°C, and as a result, biomass-normalized calcification statistically was unaffected by feeding, but was depressed 12-17% by high pCO2, with the effect accentuated at 25.6°C. These results show that massive Porites spp. has the capacity to resist the effects on calcification of 1 month exposure to 81.5 Pa pCO2 through heterotrophy and changes in biomass. Area-normalized calcification is sustained at high pCO2 by a greater biomass with a reduced biomass-normalized rate of calcification. This mechanism may play a role in determining the extent to which corals can resist the long-term effects of ocean acidification.