420 resultados para continental Antarctica


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Proterozoic country rock at Ahlmannryggen consists of flat lying basaltic lo andesitic lava flows and sedimentary rocks intruded by dioritic sills (Borgmassivet Intrusives). The suites display a typical platform cover. K-Ar age determinations gave maximum ages of about 1200 Ma on the magmatic rocks. All these suites were intruded bv Proterozoic dikes dated also at about 1200 Ma. Localiy the Proterozoic rocks have a slaty cleavage grading into mylonitic texture which strike parallel to the Jutul Penck graben. Such tectonic structures were dated at 525 Ma using syntectonic white micas. Evidence of the break-up of Gondwana during the Early Jurassic/Triassic is given by dikes at Ahlmannryggen and lava flows, dikes and sills at Vestfjella. At Ahlmannryggen the initial rift phase is documented by the development of the Jutul Penck graben and the intrusion of the 200-250 Ma continental-tholeiitic dikes striking parallel to the graben axis. The lava flows, dikes and sills at Vestfjella represent a later stage of the Gondwana break-up at about 180 Ma that probably reflects the initial stage of the opening of the Weddell Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold and dense ice shelf water (ISW) emerging from the Filchner-Ronne Ice Shelf cavity in the southwestern Weddell Sea flows northward through the Filchner Depression to eventually descend the continental slope and contribute to the formation of bottom water. New ship-born observations of hydrography and currents from Filchner Depression in January 2013 suggest that the northward flow of ISW takes place in a middepth jet along the eastern flank of the depression, thus questioning the traditional view with outflow along the western flank. This interpretation of the data is supported by results from a regional numerical model, which shows that ISW flowing northward along the eastern coast of Berkner Island turns eastward and crosses the depression to its eastern side upon reaching the Filchner ice front. The ice front represents a sudden change in the thickness of the water column and thus a potential vorticity barrier. Transport estimates of northward ISW flux based on observations ranges from 0.2 to 1.0 Sv.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10?7 W kg?1 and 10?2 m2 s?1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a inline image m thick layer near the bottom and within inline image km across the slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved under¬standing of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two ice- flow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the continental margin of the southeastern Weddell Sea, Antarctica, several channel-ridge systems can be traced on the eastern side of the Crary Fan. Swath mapping of the bathymetry reveals three southwest-northeast trending ridges up to 300 m high with channels on their southeastern side. The structures occur on a terrace of the continental slope in water depths of 2000 - 3300 m. We carried out sedimentological studies on cores from three sites. Two of the studied cores are from ridges, one is from the northwestern part of the terrace. The stratigraphy of the recovered sediments is based on accelerator mass spectrometer 14C determinations, stable oxygen and carbon isotopes analyses and paleomagnetic measurements. The sediments represent a period from the last glacial maximum (LGM) to recent time. They are composed predominantly of terrigenous components. We distinguish four different sedimentary facies and assign them to processes controlling sedimentation. Microlaminated muds and cross-stratified coarse-silty sediments originated from contour currents. Bioturbated sediments reflect the increasing influence of hemipelagic sedimentation. Structureless sediments with high contents of ice-rafted debris characterize slumps. The inferred contour currents shaping the continental slope during the LGM were canalized within the channels and supplied microlaminated mud to the western sedimentary ridges due to deflection to the left induced by the Coriolis force. The lamination of the sediments is attributed to seasonal variations of current velocities. The thermohaline bottom currents were directed to the northeast and hence opposite to the Weddell Gyre. Cross-stratified coarse-silty contourites on the ridges are intercalated with the muds and indicate spillover of faster thermohaline flows. Average sedimentation rates on the terrace of the continental slope were unusually high (250 cm/ka) during the LGM, indicating active growth phases of the Crary Fan during glacial intervals. A substantial environmental change at 19.5 - 20 ka is documented in the sediments by a gradual change from lamination to bioturbation. During the recent interglacial, bioturbated sediments were deposited in all parts of the terrace. Because of a reduction of the contour current velocities (4-7 cm/s), the water masses of the Weddell Gyre, supplying fine-grained sediments from northeast, gain a greater influence on sedimentation on the continental slope. Higher percentages of microfossils indicate enhanced biogenic productivity. Increased iceberg activity is documented by greater amounts of ice-rafted debris. The interglacial sedimentation rates decrease to a few cm/ka and indicate that the Crary Fan became relatively sediment-starved during interglacial intervals.