783 resultados para benthic faunal species


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative abundances of benthic foraminifers from the Oman margin have been analyzed from ODP Sites 725 and 726 near the upper boundary of the oxygen-minimum zone (OMZ) and 728 near the lower boundary. The relative abundance pattern of the benthic foraminiferal species in the two shallow sites show synchronous changes, which, together with variations in the faunal composition, may be attributed to changes in the location of the upper boundary of the OMZ during the last 7 million years. At the deeper site, the relative abundance pattern shows considerable variation in the faunal composition during the last 8 million years. The strong dominance of the shallow-water species Ammonia beccarii during the early Pliocene at Site 728 suggests a water depth less than 400 m during the early Pliocene and subsequent subsidence during the middle and late Pliocene to the present > 1400 m water depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, the Holocene has been considered an interval of relatively stable climate. However, recent studies from the northern Arabian Sea (Netherlands Indian Ocean Program 905) suggested high-amplitude climate shifts in the early and middle Holocene based on faunal and benthic isotopic proxy records. We examined benthic foraminiferal faunal and stable isotopic data from Ocean Drilling Program (ODP) Site 723 and total organic carbon data from ODP Site 724, Oman Margin (808 and 593 m water depths, respectively). At Site 723 the mid-Holocene shift in d18O values of infaunal benthic species Uvigerina peregrina (1.4 per mil) is 3 times larger than that of epifaunal benthic species Cibicides kullenbergi recorded at Site NIOP 905 off Somalia. However, none of the five other benthic species we measured at Hole 723A exhibits such a shift in d18O. We speculate that the late Holocene d18O decrease in U. peregrina represents species-specific changes in ecological habitat or food preference in response to changes in surface and deep ocean circulation. While the stable isotopic data do not appear to indicate a middle Holocene climatic shift, our total organic carbon and benthic faunal assemblage data do indicate that the early Holocene deep Arabian Sea was influenced by increased ventilation perhaps by North Atlantic Deep Water and/or Circumpolar Deep Water incursions into the Indian Ocean, leading to remineralization of organic matter and a relatively weak early Holocene oxygen minimum zone in the northwest Arabian Sea in spite of strong summer monsoon circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early Miocene to Quaternary benthic foraminifers have been quantitatively studied (>63 ?m size fraction) in a southwest Pacific traverse of DSDP sites at depths from about 1300 to 3200 m down the Lord Howe Rise (Site 590,1299 m; Site 591, 2131 m; Site 206, 3196 m). Benthic foraminiferal species smaller than 150 µm are by far dominant in the samples, averaging from 78 to 89% of the total benthic foraminiferal assemblages in the three sites examined. Although about 150 benthic foraminiferal species or taxonomic groups have been identified, only a few species dominate the assemblages. These dominant species include Epistominella exigua, E. rotunda, and Globocassidulina subglobosa, which prevail in the three sites, and Oridorsalis umbonatus, E. umbonifera, and Cassidulina carinata, which occur usually in frequencies of between 10 and 30%. Faunal changes in Neogene benthic foraminiferal assemblages are not similar in each of the three sites, but faunal successions are most similar between the two shallowest sites. The deepest site differs in composition and distribution of dominant species. There are three intervals during which the most important changes occur in benthic foraminiferal assemblages: the early middle Miocene (14 Ma; the Orbulina suturalis Zone and the Globorotalia fohsi s.l. Zone); the late Miocene (6 Ma; the Globigerina nepenthes Zone) and near the Pliocene/Pleistocene boundary at about 2 Ma. A Q-mode factor analysis of the faunal data has assisted in recognizing assemblage changes during the Neogene at each of the sites. Early Miocene assemblages were dominated by Globocassidulina subglobosa at Site 590 (1299 m), by G. subglobosa and Oridorsalis umbonatus at Site 591 (2131 m), and by G. subglobosa, E. exigua, and Bolivina pusilla at Site 206 (3196 m). In the early middle Miocene at Sites 590 and 591, a marked increase occurred in the frequencies of E. exigua. Epistominella exigua reached maximum abundance in the early Miocene in the deeper Site 206, and in the middle and early late Miocene in the shallower Sites 590 and 591. In the late Miocene, a spike occurred in the frequencies of E. umbonifera in Site 206, whereas the dominant species changed from E. exigua to E. rotunda at Site 590. Latest Miocene to late Pliocene assemblages were dominated by E. rotunda at Site 590, by E. exigua at Site 591, and by G. subglobosa-E. exigua (early Pliocene) and E. rotunda-E. exigua (late Pliocene) at Site 206. At the Pliocene/Pleistocene boundary, E. exigua temporarily diminished in importance at Sites 591 and 206. Quaternary assemblages were dominated by E. rotunda and Cassidulina carinata at Site 590, by E. rotunda at Site 591, and by E. exigua at Site 206. These major faunal changes are all associated with known major paleoceanographic events-the middle Miocene development of the Antarctic ice sheet; the latest Miocene global cooling and increased polar glaciation; and the onset of quasiperiodic glaciation of the Northern Hemisphere. These major paleoceanographic events undoubtedly had a profound effect on the intermediate and deep water mass structure of the Tasman Sea as recorded by changes in benthic foraminiferal assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DSDP Site 516 contains a complete middle Eocene to lower Miocene interval with a well-developed Oligocene sequence that is more than 300 m thick. In this paper, the most important and characteristic benthic foraminiferal species from this interval are described and illustrated, and their quantitative and biostratigraphic distribution is given. Middle Eocene benthic assemblages, derived from pelagic intercalations in a partly turbiditic sequence, are low in diversity. Benthic assemblages of fairly high diversity occur in limestones, chalks, and oozes of the upper Eocene to lower Miocene. The consistently high rate of new species appearances at Site 516 during late Eocene and Oligocene contrasted greatly with the very slow rate of change in abyssal faunas at that time; there were no significant faunal changes at the Eocene/Oligocene boundary. The assemblages are dominated by Cibicidoides (mostly C. ungerianus or C. kullenbergi) and Lenticulina. Buliminids were also important during the Eocene and early Oligocene. Faunal comparison with other Atlantic DSDP sites and drill holes in the Gulf of Mexico suggest an approximately mid-bathyal (500-1500 m) depth of deposition during late Eocene and Oligocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A faunal boundary found at the base of the Brunhes Chronozone at Sites 658 and 659 confirms previous observations from several locations in the Atlantic Ocean and may be classified as a supraregional "extinction event". Several benthic foraminifer species typical of the Pliocene disappear near the Brunhes/Matuyama boundary, thus marking the upper limit of a faunal zone (faunal unit). Improved chronological dating indicates that the disappearance of these species occurs over a period of about 100,000 yr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydraulic piston coring at DSDP Site 548, on the upper continental slope southwest of Ireland, recovered a nearly complete Pliocene section spanning 103 m of sediment. The sediments are greenish gray carbonate-rich hemipelagites containing abundant nannofossils and foraminifers. Grain-size analysis demonstrates that the texture of the section is fairly constant, with most of the variation occurring in 63- to 32-µm and < 2-µm fractions. Previous research has shown that the middle-to-late Pliocene transition in the North Atlantic was marked by the appearance of the planktonic foraminiferal species Globorotalia inflata and by the first occurrence of significant quantities of ice-rafted sediment grains in deep-sea sediments. The latter is taken to represent the first important development of Northern Hemisphere glaciation. The first appearance of G. inflata is carefully documented for Site 548 and is demonstrated to be an evolutionary datum at this site, rather than an ecologically controlled first appearance. Surface ocean conditions represented in the sediment section spanning the appearance of G. inflata were strongly cyclic, resulting in large periodic changes in the abundances of Globorotalia puncticulata and N. acostaensis. The benthic foraminiferal population was studied in detail over the middle-to-upper Pliocene transition to establish the nature and behavior of the intermediate-depth water mass in the northeastern Atlantic at the time of ice-sheet growth in the Northern Hemisphere. This water mass is presently warm and saline, having its source in the Mediterranean Sea. The benthic data show that the intermediate-depth water mass was undergoing a series of progressive changes over the interval including the first appearance of G. inflata. These changes are particularly reflected in the relative abundances of Globocassidulina subglobosa (Brady), Uvigerina, and Ehrenbergina. Also, the mean size of individuals in the G. subglobosa populations shows systematic variation, indicating changing intermediate-depth water properties. Oxygen-isotope analyses show that the intermediate-depth water mass was cold during the middle-to-late Pliocene transition. This interpretation is supported by the relative abundances of benthic foraminiferal species. Hence, the intermediate-depth northeastern Atlantic water mass of the middle to late Pliocene was considerably different from the intermediate-depth water mass of the present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To reconstruct paleoceanographic changes in the eastern Mediterranean during the last 330,000 years, we studied benthic foraminifera in a piston core from the Ionian Sea. The fauna exhibits large fluctuations in foraminiferal number, diversity, and species composition. Interglacials are characterized by low foraminiferal number and diversity indicating oligotrophic conditions. Directly below or above interglacial sapropels, increased numbers of low-oxygen-tolerant species indicate a strong reduction of deep water circulation. Glacials are characterized by increased foraminiferal number and diversity and faunas that are dominated by shallow infaunal species indicating mesotrophic conditions. Around glacial sapropel S6 very high foraminiferal numbers and the dominance of shallow and deep infaunal species suggest enhanced organic matter fluxes. These faunal results provide information about changes in the African and North Atlantic climate systems (monsoon and westerlies) controlling the humidity and wind stress in the Mediterranean region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifers were studied in upper Eocene to Recent core-catcher samples from DSDP Sites 573, 574, and 575. The sites are on a north-south transect from the equator to about 05°N at about 133°W, water depth 4300 to 4600 m. At Site 574 additional samples were used to study the Eocene/Oligocene boundary in detail. About 200 specimens were counted per sample. The fauna is highly diverse (about 50 to 70 species per sample) and is of low dominance. The diversity is not related to age or sub-bottom depth. Many species are cosmopolitan and probably have wide environmental tolerances. Fluctuations in frequency of some taxa (e.g., Nuttallides umbonifera, Epistominella exigua, and Uvigerina spp.) cannot be correlated from one site to another. Several common species (e.g. Oridorsalis umbonatus and Globocassidulina subglobosa) range from late Eocene to Recent. First and last appearances are generally difficult to define precisely because many species are rare. For some species these datums differ from one site to another, but several datum levels are within 1 m.y. at all sites. First and last appearances are most numerous in two intervals, the late Eocene to early Oligocene (about 32 to 37 Ma) and the early to middle Miocene (about 13 to 18.5 Ma). Isotopic events occur within each of these periods of benthic faunal change, but the isotopic events have a shorter duration and start after the initiation of the changes in the fauna. Changes in deep-sea benthic faunal composition are not directly related to short-term oceanographic changes as expressed in isotopic records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sediment cores 225514 and 225510 were recovered from 420 and 285 m water depth, respectively. They were investigated for their benthic foraminiferal delta13C during the last 500 years. Both cores were recovered from the southern flank of the Skagerrak. The delta13C values of Uvigerina mediterranea and other shallow infaunal species in both cores indicate that organic matter rain rates to the seafloor varied around a mean value until approximately AD 1950 after which they increased. This increase might result from changes in the North Atlantic Current System and a co-occurring persistently high North Atlantic Oscillation index state in the 1980s to 1990s, rather than from anthropogenic eutrophication. Using delta13C mean values of multiple species, we reconstruct delta13C gradients of dissolved inorganic carbon (DIC) within pore waters for the time periods AD 1500 to 1950 and AD 1950 to 2000. The calculated delta13CDIC ranges, interpreted as indicating total organic matter remineralization due to respiration, are generally bigger in Core 225514 than in Core 225510. Since mean delta13C values of U. mediterranea suggest that organic matter rain rates were similar at both locations, differences in total organic matter remineralization are attributed to differing oxygen availability. However, oxygen concentrations in the overlying bottom water masses are not likely to have differed significantly. Thus, we suggest that organic matter remineralization was controlled by oxygen availability within the sediments, reflecting strong differences in sedimentation rates at the two investigated core sites. Based on the assumptions that tests of benthic foraminiferal species inhabiting the same microhabitat depth should show equal delta13C values unless they are affected by vital effects and that Globobulimina turgida records pore water delta13CDIC, we estimate microhabitat-corrected vital effects for several species with respect to G. turgida: >0.7 per mil for Cassidulina laevigata, >1.3 per mil for Hyalinea balthica, and >0.7 per mil for Melonis barleeanus. Melonis zaandami seems to closely record pore water delta13CDIC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ~1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ~4 per mil for delta 13C and 1.1 per mil for delta 18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower delta 13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of delta 13C values by up to 3 per mil within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean delta 18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low delta 18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO3]2- effect on the benthic foraminiferal stable isotopes. Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6 per mil between 250 and 1250 µm shell size. Although delta 13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a high resolution, multiproxy study of the relationship between pelagic and benthic environments of a coastal upwelling system in the subtropical NE Atlantic Ocean. Marine sediments corresponding to late MIS3 to the Holocene in the radiocarbon dated core GeoB7926, retrieved off Mauritania (21°N) were analysed to reconstruct productivity in surface waters and its linkage to deep waters during the last 35 ka BP. High latitude cold events and changes in atmospheric and oceanographic dynamics influenced upwelling intensity over this time period. Subsequently, this caused changes in primary productivity off this low-latitude coastal upwelling locality. The benthic foraminiferal fauna displays four main community shifts corresponding to fundamental climatic events, first of all during late MIS3 (35-28 ka BP), secondly from 28 to 19 ka BP (including Heinrich event 2 and the LGM), thirdly within Heinrich event 1, the Bølling Allerød and the Younger Dryas (18-11.5 ka BP) and finally during the Holocene (11.5-0 ka BP). In particular, strong pelagic-benthic coupling is apparent in MIS 3, as demonstrated by increased primary productivity, indicated by moderate DAR and the dominance of benthic foraminiferal species which prefer fresh phytodetritus. A decline in upwelling intensity and nutrient availability follows, which resulted in a proportionately larger amount of older, degraded matter, provoking a shift in the benthic foraminifera fauna composition. This rapid response of the benthic environment continues with a progressive increase in upwelling intensity due to sea level and oceanographic changes and according high surface production during the LGM. During Heinrich event 1 and the Younger Dryas, extreme levels of primary production actually hindered benthic environment through the development of low oxygen conditions. After this period, a final change in benthic foraminiferal community composition occurs which indicates a return to more oxygenated conditions during the Holocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.