47 resultados para age structure


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nine holes were drilled with a submersible hydraulic drill into the slopes and reef flats of the Caubyan and Calituban reefs as well as of Olango Flat. The maximum depth of core penetration was 11 m. 14C ages showed that the Caubyan and Calituban reefs were formed within the last 6,000 years. Corals settled on a pre-existing relief parallel to the island of Bohol, building a framework for other carbonate-producing organisms. The reef flat south of Olango has a different structure. Formation took place during a Pleistocene high sea level, e.g. 125,000 years ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orbital tuning of benthic d18O is a common approach for assigning ages to ocean sediment records. Similar environmental forcing of the northern South China Sea and the southeast Asian cave regions allows for transfer of the speleothem d18O radiometric chronology to the planktonic and benthic d18O records from Ocean Drilling Program Site 1146, yielding a new chronology with 41 radiometrically calibrated datums, spanning the past 350 kyr. This approach also provides for an independent assessment of the accuracy of the orbitally tuned benthic d18O chronology for the last 350 kyr. The largest differences relative to the latest chronology occur in marine isotope stages (MIS) 5.4, 5.5, 6, 7, and 9.3. Prominent suborbital-scale structure believed to be global in nature is identified within MIS 5.4 and MIS 7.2. On the basis of the radiometrically calibrated chronology, the time constant of the ice sheet is found to be 5.4 kyr at the precession band (light d18O lags precession minima by -55.4°) and 10.4 kyr at the obliquity band (light d18O lags obliquity maxima by 57.4°). These values are significantly shorter than the single 17 kyr time constant originally estimated by Imbrie et al. (1984), based primarily on the timing of terminations I and II and the 15 kyr time constant used by Lisiecki and Raymo (2005, doi:10.1029/2004PA001071).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dansgaard-Oeschger (D-O) cycles are the most dramatic, frequent, and wide-reaching abrupt climate changes in the geologic record. On Greenland, D-O cycles are characterized by an abrupt warming of 10 ± 5°C from a cold stadial to a warm interstadial phase, followed by gradual cooling before a rapid return to stadial conditions. The mechanisms responsible for these millennial cycles are not fully understood but are widely thought to involve abrupt changes in Atlantic Meridional Overturning Circulation due to freshwater perturbations. Here we present a new, high-resolution multiproxy marine sediment core monitoring changes in the warm Atlantic inflow to the Nordic seas as well as in local sea ice cover and influx of ice-rafted debris. In contrast to previous studies, the freshwater input is found to be coincident with warm interstadials on Greenland and has a Fennoscandian rather than Laurentide source. Furthermore, the data suggest a different thermohaline structure for the Nordic seas during cold stadials in which relatively warm Atlantic water circulates beneath a fresh surface layer and the presence of sea ice is inferred from benthic oxygen isotopes. This implies a delicate balance between the warm subsurface Atlantic water and fresh surface layer, with the possibility of abrupt changes in sea ice cover, and suggests a novel mechanism for the abrupt D-O events observed in Greenland ice cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight- to ten-point depth profiles (from 1200 to 4800 m water depth) of oxygen and carbon isotopic values derived from benthic foraminifera, averaged over selected times in the past 160 ka, are presented. The data are from 10 sediment cores off eastern New Zealand, mainly North Chatham Rise. This lies under the Deep Western Boundary Current in the Southwest Pacific and is the main point of entry for several water masses into the Pacific Ocean. The benthic isotopic profiles are related to the structure of water masses at present and inferred for the past. These have retained a constant structure of Lower Circumpolar Deep Water-Upper Circumpolar Deep Water/North Pacific Deep Water-Antarctic Intermediate Water with no apparent changes in the depths of water mass boundaries between glacial and interglacial states. Sortable silt particle size data for four cores are also examined to show that the vigour of the inflow to the Pacific, while variable, appears to have remained fairly constant on average. Among the lowest Last Glacial Maximum values of benthic d13C in the world ocean (-1.03 per mil based on Cibicidoides wüllerstorfi) occurs here at ~2200 m. Comparable values occur in the Atlantic sector of the Southern Ocean, while those from the rest of the Pacific are distinctly higher, confirming that the Southern Ocean was the source for the unventilated/nutrient-enriched water seen here. Oxygen and carbon isotopic data are compatible with a glacial cold deep water mass of high salinity, but lower nutrient content (or better ventilated), below ~3500 m depth. This contrasts with the South Atlantic where unventilated/nutrient-enriched water extends all the way to the sea bed. Comparison with previous studies also suggests that the deeper reaches of the Antarctic Circumpolar Current below ~3500 m are not homogeneous all around the Southern Ocean, with the Kerguelen Plateau and/or the Macquarie-Balleny Ridges posing barriers to the eastward spread of the deepest low-d13C water out of the South Atlantic in glacials. These barriers, combined with inferred high density of bottom waters, restricted inter-basin exchange and allow three glacial domains dominated by bottom waters from Weddell Sea, Adelie Coast and Ross Sea to be defined. We suggest that the Ross Sea was the main source of the deep water entering the Pacific below ~3500 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taxonomic composition and distribution of planktonic foraminifera are studied in section of Core GC-11 penetrated through Upper Quaternary sediments of the Bowers Ridge western slope, south Bering Sea. It is shown that structure of foraminiferal assemblage and productivity varied substantially during the last 32000 calendar years in response to changes in surface water temperatures and water mass circulation in the North Pacific including the Bering Sea. Productivity was maximal during the deglaciation epoch, being notably lower in Holocene and minimal at glaciation time.