403 resultados para ac-susceptibility measurements
Resumo:
An orbital floating time scale of the Hauterivian-Barremian transition (Early Cretaceous) is proposed using high-resolution magnetic susceptibility measurements. Orbital tuning was performed on the Río Argos section (southeast Spain), the candidate for a Global boundary Stratotype Section and Point (GSSP) for the Hauterivian-Barremian transition. Spectral analyses of MS variations, coupled with the frequency ratio method, allow the recognition of precession, obliquity and eccentricity frequency bands. Orbitally-tuned magnetic susceptibility provides minimum durations for ammonite biozones. The durations of well-constrained ammonite zones are assessed at 0.78 myr for Pseudothurmannia ohmi (Late Hauterivian) and 0.57 myr for Taveraidiscus hugii (Early Barremian). These results are consistent with previous estimates from the other reference section (Angles, southeast France) and tend to show that the Río Argos section displays a complete succession for this time interval. They differ significantly from those proposed in the Geologic Time Scale 2008 and may help to improve the next compilation. The Faraoni Oceanic Anoxic Event, a key Early Cretaceous oceanographic perturbation occurring at the P. ohmi/P. catulloi subzone boundary has a duration estimated at 0.10-0.15 myr, which is similar to previous assessments.
Resumo:
Magnetic field and susceptibility data were collected using the geological high-resolution magnetometer tool string (GHMT) at three sites during Ocean Drilling Program Leg 162. Postcruise processing of the magnetic field data yielded a polarity stratigraphy for Holes 986C and 987E. A magnetic susceptibility record was measured at Hole 984B. Detailed analysis of the core and log susceptibility records at Hole 984B yielded an empirical tool resolution of the susceptibility measurement tool (SUMT) of 53 cm. At Site 984, where sedimentation rates were typically >10 cm/k.y., this gave a resolution of at least ~5000 yr. This data report summarizes the GHMT postcruise processing, method of interpretation, and analysis of the SUMT resolution.
Resumo:
Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.
Resumo:
We present grain size, granulometric statistical parameters, and calcium carbonate content of sediment samples from the summit and east and west flanks of southern Hydrate Ridge (Sites 1244-1250). These data are compared with magnetic susceptibility measurements from the same intervals. Bulk and clay mineralogy from Sites 1244 (east flank), 1247 (west flank), and 1250 (summit) are also presented. The integration of these data allows us to characterize the main sedimentary facies and composition of the Quaternary age sediments from southern Hydrate Ridge.