103 resultados para WESTERN BOUNDARY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indian Ocean is an important component of the global thermohaline circulation system, as its western boundary currents feed the Agulhas Current, an integral part of the Atlantic meridional overturning circulation. However, Indian Ocean intermediate to deep-water variability on glacial-interglacial timescales is still a matter of debate. Here we provide stable carbon and oxygen isotopes and sediment elemental compositions of a sediment core from the edge of the Somali Basin. We demonstrate that throughout the past 600 kyr the intermediate western Indian Ocean was primarily bathed by Southern Ocean sourced Upper Circumpolar Deep Water (UCDW). This Southern Ocean sourced water mass enters the Somali Basin via the Amirante Passage or the Mozambique Channel and represents a downstream equivalent of South Atlantic UCDW. We cannot clearly account for the shortterm passage of Red Sea Water (RSW) at 1500 m water depth along the African continental margin, as previously suggested, on glacial-interglacial timescales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately one thousand sediment samples from ODP Site 1123 on the Chatham Rise, east of New Zealand, have been examined for inorganic elemental concentrations. ODP 1123 provides a record of sediment drift deposition under the Deep Western Boundary Current, the main inflow of deep water to the Pacific Ocean since the Early Oligocene, though a major hiatus spans the late Early Oligocene to the Early Miocene. Normalisation of the elemental concentrations by aluminium was used to allow for the effects of variable carbonate dilution. The elemental ratios were used as proxies for sediment composition and as palaeoceanographic indices. The samples were collected at a resolution designed to sample adequately any variation in elemental ratios at the scale of the Milankovitch orbital cycles. The sampled intervals span the Early Oligocene, Early Miocene, mid-Miocene and Late Pleistocene to Recent. Anomalous Si/Al, K/Al, Ti/Al values in the upper Pleistocene section, often associated with horizons of low carbonate, are attributed to tephras derived from North Island. Not all of the tephras detected geochemically had been detected visually in the cores. A total of 37 tephra events between 1.17 Ma BP and the present are recognised based on this and the shipboard investigations. The tephra events cluster at intervals of approximately 326 000 years (326 ka) perhaps due to variations in eruption frequency on North Island and/or to variations in the regional palaeowind intensity and direction. In the Late Pleistocene to Recent P/Al (inferred nutrient availability), percent calcium carbonate (%CaCO3) and Ba/Al (inferred productivity) varied regularly at a period of 40 000 years with these factors lagging minimum global ice volumes (interglacials). During the mid-Miocene CaCO3, Ba/Al, P/Al and Si/Al all gradually increased with %CaCO3 and P/Al showing regular 138 000-yr cyclicity and Ba/Al showing 44-ka cyclicity. Inferred productivity (Ba/Al) may have been rising in association with increasing nutrient availability (P/Al) at the same time as increased vigour of the Deep Western Boundary Current that was connected to a period of rapid ice-sheet growth in Antarctica. In the Early Miocene P/Al and Si/Al were much higher than subsequently and both %CaCO3 and P/Al exhibited 131 000-yr cycles. By far the highest nutrient levels and inferred productivity at this site apparently occurred during the Early Oligocene as revealed by long-term changes in P/Al and Si/Al. A progressive rise in K/Al, but stable Ti/Al from the Early Oligocene to the Recent probably indicates increased proportions of illite in the clay mineral fraction of the drift sediments caused by increased flux of debris from the Southern Alps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Canonical correspondence analysis indicates that the distribution of Neogene benthic foraminiferal faunas (>63 µm) in seven DSDP and ODP sites (500-4500 m water depth) east of New Zealand (38-51°S, 170°E-170°W) is most strongly influenced by depth (water mass stratification), and secondly by age (palaeoceanographic changes influencing faunal composition and biotic evolution). Stratigraphic faunal changes are interpretted in terms of the pulsed sequential development of southern, and later northern, polar glaciation and consequent cooling of bottom waters, increased vertical and lateral stratification of ocean water masses, and increased overall and seasonal surface water productivity. Oligocene initiation of the Antarctic Circumpolar Current and Deep Western Boundary Current (DWBC), flowing northwards past New Zealand, resulted in extensive hiatuses throughout the Southwest Pacific, some extending through into the Miocene. Planktic foraminiferal fragmentation index values indicate that carbonate dissolution was significant at abyssal depths throughout most of the Neogene, peaking at upper abyssal depths in the late Miocene (11-7 Ma), with the lysocline progressively deepened thereafter. Miocene abyssal faunas are dominated by Globocassidulina subglobosa and Oridorsalis umbonatus, with increasing Epistominella exigua after 16 Ma at upper abyssal depths. Peak abundances of Epistominella umbonifera indicate increased input of cold Southern Component Water to the DWBC at 7-6 Ma. Faunal association changes imply establishment of the modern Oxygen Minimum Zone (upper Circumpolar Deep Water) in the latest Miocene. Significant latitudinal differences between the benthic foraminiferal faunas at lower bathyal depths indicate the existence of an oceanic front along the Chatham Rise (location of present Subtropical Front), since the early late Miocene at least, with more pulsed productivity (higher E. exigua) along the south side. Modern Antarctic Intermediate Water faunal associations were established north of the Chatham Rise at 10-9 Ma, and south of it at 3-1.5 Ma. Middle-upper bathyal faunas on the Campbell Plateau are dominated by reticulate bolivinids during the early and middle Miocene, indicative of sustained productivity above relatively sluggish, suboxic bottom waters. Faunal changes and hiatuses indicate increased current vigour over the Campbell Plateau from the latest Miocene on. Surface water productivity (food supply) appears to have increased in three steps (at times of enhanced global cooling) marked by substantially increased relative abundance of: (1) Abditodentrix pseudothalmanni, Alabaminella weddellensis, Cassidulina norvangi (16-15 Ma, increased pulsed productivity); (2) Bulimina marginata f. aculeata, Nonionella auris, Trifarina angulosa, Uvigerina peregrina (3-1.5 Ma, increased overall productivity); and (3) Cassidulina carinata (1-0.5 Ma, increased overall productivity). Three intervals of deep-sea benthic foraminiferal taxonomic turnover are recognised (16-15, 11.5-10, 2-0.5 Ma) corresponding to intervals of enhanced global cooling and possible productivity changes. The late Pliocene-middle Pleistocene extinction, associated with increasing Northern Hemisphere glaciation, culminating in the middle Pleistocene climatic transition, was more significant in the study area than the earlier Neogene turnovers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Basic parameters of sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of concentrations and particulate standing crop in it; distribution of horizontal and vertical fluxes of sedimentary material; and bottom sediments and their absolute masses (accumulation rates). Comparison of vertical fluxes of particulate matter and accumulation rates of sediments showed that contemporary fluxes of sedimentary material to the bottom provided distribution of accumulation rates of sediments within the survey area during Holocene.