134 resultados para Vents
Resumo:
The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.
Resumo:
Data on nephelometry, CTD probing, and dissolved manganese obtained during Cruise 34 of R/V Akademik Mstislav Keldysh showed that a multiplume was found over the Mid-Atlantic Ridge rift zone near 29°N. This multiplume comprises plumes of several hydrothermal vents and is separate from the plume of the Broken Spur hydrothermal field. Approximate coordinates were estimated for three vents.
Resumo:
Research of the ocean floor using the Mir submersibles carried out south of the Hawaiian Archipelago allowed to recover flows of recent picrite basalts. Lava vents are confined to a field of development of open fractures of a gjar type. Basalts represent initial lava flows in the structure of the Hawaiian volcanic archipelago. Considering contents of alkali and rare-earth elements in them, the picrite basalts of the bottom could be assigned to a series of island tholeiites. They are products of high level melting of asthenospheric matter at depth about 75-80 km as a result of decompression near a deep fracture that occurred in the lithosphere and asthenosphere. Similar picrite basalts were found in the base of the youngest volcano of the Hawaiian chain the Loihi Volcano. With respect to contents of alkali metals, these rocks are assigned to the subalkaline series of rocks formed during melting of garnet lherzolites. This could probably be explained by supply of melts from deeper levels of the asthenosphere after partial packing of an initial magma effluent fracture.
Resumo:
High-resolution bathymetric surveys, bottom photography and sample analyses show that Loihi Seamount at the southernmost extent of the Hawaiian ëhotspotí is an active, young submarine volcano that is probably the site of an emerging Hawaiian island. Hydrothermal deposits sampled from the active summit rift system were probably formed by precipitation from cooling vent fluids or during cooling and oxidation of high-temperature polymetallic sulphide assemblages. No exotic benthic fauna were found to be associated with the presently active hydrothermal vents mapped.
Resumo:
Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
Resumo:
Hole 433C, a multiple re-entry hole drilled in 1862 meters of water on Suiko Seamount in the central Emperor Seamounts, penetrated 387.5 meters of lava flows overlain by 163.0 meters of sediments. The recovered volcanic rocks consist of three flow units (1-3) of alkalic basalt underlain by more than 105 flows or flow lobes (Flow Units 4-67) of tholeiitic basalt. This study reports trace-element, including rare-earth element (REE), data for 25 samples from 24 of the least altered tholeiitic flows. These data are used to evaluate the origin and evolution of tholeiitic basalts from Suiko Seamount and to evaluate changes in the mantle source between the time when Suiko Seamount formed, 64.7 ± 1.1 m.y. ago (see Dalrymple et al., 1980), and the present day. Stearns (1946), Macdonald and Katsura (1964) and Macdonald (1968) have established that chemically distinct lavas erupt during four eruptive stages of development of a Hawaiian volcano. These stages, from initial to final, are shield-building, caldera-filling, post-caldera, and post-erosional. The lavas of the shield-building stage are tholeiitic basalts, which erupt rapidly and in great volume. The shield-building stage is quickly followed by caldera collapse and by the caldera-filling stage, during which the caldera is filled by tholeiitic and alkalic lavas. During the post-caldera stage, a relatively thin veneer of alkalic basalts and associated differentiated lavas are erupted, sometimes accompanied by minor eruptions of tholeiitic lava. After a period of volcanic quiescence and erosion, lavas of the nephelinitic suite, which include both alkalic basalts and strongly SiO2-undersaturated nephelinitic basalts, may erupt from satellite vents during the post-erosional stage. Many Hawaiian volcanoes develop through all four stages; but individual volcanoes have become extinct before the cycle is complete. We interpret the tholeiitic lavas drilled on Suiko Seamount to have erupted during either the shield-building or the caldera-filling stage, and the overlying alkalic flows to have erupted during either the caldera-filling or the post-caldera stage (see Kirkpatrick et al., 1980).
Resumo:
Gas composition and hydrochemistry of bottom waters of the Bay of Plenty in the hydrothermally active zone of the Pacific island arc are investigated. Methane content in underwater vents is an order of magnitude greater than that in volcanic exhalations on the land. Salinity, pH, total content of CO2, its partial pressure, and silica content also differ. Correlations between gas parameters, hydrochemical parameters, and biological and microbiological parameters are identified.
Resumo:
This publication considers data on aquatic anomalies (hydrothermal plumes) in the areas of 26° and 29°N of the Mid-Atlantic Ridge (MAR). Mass of hydrothermal iron supply and intensity of iron sedimentation onto the bottom were estimated by means of sediment traps. It was found that the plume of the TAG hydrothermal vent 6 km**3 in volume contained about 67 tons of particulate Fe; the plume of the Broken Spur field (up to 8.24 km**3 in volume) contained 23.5 tons of particulate Fe or less because of its lower concentration. Data on sediment matter fluxes showed that 0.3-0.5% of hydrothermal iron was precipitated immediately from the neutrally buoyant plume onto the bottom; the bulk of iron was dissipated into environment. From dimensions of the plumes, flow dynamics, iron concentrations in the plumes, and amounts of iron supplied by hydrothermal vents, it was found that resident time of the plumes considered was from 5 to 10 days.
Resumo:
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
Resumo:
Subduction of the Pacific plate beneath the Mariana forearc releases fluids to the overlying mantle wedge that ascend, producing serpentinite "mud" that discharges on the ocean floor. As part of Leg 195 of the Ocean Drilling Program cores were obtained from drill-holes into the mud volcanoes. We report the isotopic composition of Sr in water squeezed from intervals of the cores, in the serpentinite mud, in leaches of the serpentinite mud, and in entrained small harzburgitic clasts. Except in the upper few meters below the seawater-mud interface, where pore water approaches seawater Sr concentration and isotopic ratio, Sr concentration and isotopic composition remain constant at 3-6 µmol/kg and ~0.7054. Because the elemental chemistry of the pore water is unlike seawater, this isotopic composition reflects fluids derived from the subducted slab, probably modified by reaction with mantle material during ascent. Higher Sr isotopic ratios, up to 0.7087, - but not with higher Sr concentrations in pore water - occur superimposed on an advection profile at 13-16 mbsf surrounding a thin layer of foraminiferal sand. Since the upward seepage velocity of slab fluids in the mud volcano vents is a few cm/yr, exchange of Sr between these carbonates and the rising fluids must have occurred within a maximum of a few hundred years, essentially instantaneously given the millions, or tens of millions, of years the mud volcanoes have been in existence. In contrast, the strontium isotopic compositions of leached serpentinite mud, and of small harzburgite clasts entrained in the mud, are always significantly greater than that of the pore water. In small harzburgite clasts the ratio reaches 0.7088, almost as high as the seawater value of 0.7092 and much higher than the value of typical mantle-derived strontium of ~0.704. The serpentinite muds and harzburgite clasts clearly equilibrated with seawater Sr when they were initially deposited at the surface of the seamount, but following burial they have not fully equilibrated with strontium in the pore water now discharging through the vents. These variations in the strontium isotopic composition of solids and pore waters are more consistent with episodic expulsion of fluids in the subduction zone than steady state flow. Whereas strontium in carbonates equilibrates isotopically within a few hundred years, strontium in buried harzburgite clasts does not equilibrate in the same time, assuming steady state rates of upward fluid flow. By inference, the harzburgite clasts and associated serpentinite mud must have been near the seafloor, unburied, for a yet undetermined but much longer period of time to have equilibrated from ~0.704 to 0.709 prior to subsequent burial. It may be possible to characterize at least the periodicity of fluid release in the mud volcano setting by investigating the zonation of strontium isotopic composition of hartzburgite clasts throughout the 60-meter deep composite cores.