818 resultados para Ultrabasic rocks
Resumo:
A core of foraminiferal-coccolithic oozes filling a valley of the transform fault located at 29°40'S on the South Atlantic Ridge contains layers composed of angular fragments of igneous and metamorphic rocks. They include many serpentinites deriving from serpentinized ultrabasic rocks, probably exposed on the lower section of the southern slope of the fault valley. A mineral and chemical description of these serpentinites is given.
Resumo:
Results of petrographic studies of ultrabasites and gabbro from rift zones of the Indian Ocean are discussed using materials of Cruise 36 of R/V Vityaz. Rocks sampled from two sites 2700 km apart are close to each other in their composition. Petrographically ultrabasic rocks are divided into four subgroups: I - dunite; II - harzburgite, serpentinite; III - plagioclase lherzolite; and IV - metamorphically altered rocks. Petrographic description and chemical composition of basic rock varieties are presented as well as description of rock-forming minerals and their optical properties. Formation of pyroxene and plagioclase is shown to be related to autometasomatosis. Formation of ultrabasite in rift zones is related to complicated processes.
Resumo:
Results of petrographic studies of ultrabasite and gabbro from the rift zones of the Indian Ocean ridges are discussed using materials of R/V Vityaz Cruise 36. Rocks sampled from two sites 2700 km apart are close to each other in their composition. Petrographically ultrabasic rocks are divided into four subgroups: I - dunite; II - harzburgite, serpentinite; III - plagioclase lherzolite; and IV - metamorphically altered rocks. Petrographic description and chemical composition of basic rock varieties are presented as well as description of rock-forming minerals and their optical properties. Formation of pyroxene and plagioclase is shown to be related to autometasomatosis, which concludes the magmatic phase proper in rock mass formation accompanied by activity of residual intragranular liquid. Formation of ultrabasite in the rift zones is related to complicated processes.
Resumo:
Grain size, shape and roundness of rock fragments, texture, composition of bottom sediments from the Sea of Okhotsk are under study. These data are compared with parameters of modern lithodynamic conditions of the sea and genetic types of deposits are identified. These criteria are used for partition of Holocene and Upper Pleistocene sediment series and for identifying conditions of their formation. Dependence of structure of different genetic types of deposits on intensity of hydrodynamic processes, of terrigenous contribution, and on direction consedimentational tectonic movements is under consideration.
Resumo:
Ultrabasic rock samples collected from two areas of the crustal zone of the Mid-Atlantic Ridge (MAR): (1) 13-17°N (near the intersection of the ridge axis with the 15°20'N prime fracture zone), and (2) 33°40'N prime (the western intersection of the MAR crest with the Heis fracture zone) were objects of this study. Samples of peridotite and of plutonic and volcanic rocks associated with it were used to measure their Sm/Nd, 143Nd/144Nd, and 147Sm/144Nd ratios, which allowed to test time and genetic relationships between evolution of mantle material under the ridge crest and products of its magmatic activity. Results of this work proved ubiquitous discrepancy between melting degree values of extremely depleted mantle peridotites in the MAR area between 14°N and 16°N, obtained using petrologic and geochemical methods. This discrepancy suggests large-scale interaction between mantle material and magmatic melts and fluids enriched in incompatible elements or fluids. The results obtained suggest that repeated melting of the mantle under the axial MAR zone is an universal characteristic of magmatism in low-velocity spreading centers. The results of this study also proved the crestal MAR zone in the Central Atlantic region show distinct indications of isotope-geochemical segmentation of the mantle. It is suggested that the geochemically anomalous MAR mantle peridotite in the zone of the MAR intersection with the 15°20'N prime fracture zone can be interpreted as fragments of mantle substrate, foreign for the Atlantic mantle north of the equator.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
Sulfur isotope ratios have been determined in 19 selected igneous rocks from Leg 126. The d34S of the analyzed rocks ranges from -0.1 â to +19.60 â. The overall variation in sulfur isotope composition of the rocks is caused by varying degrees of seawater alteration. Most of the samples are altered by seawater and only five of them are considered to have maintained their magmatic sulfur isotope composition. These samples are all from the backarc sites and have d34S values varying from +0.2 â to +1.6 â, of which the high d34S values suggest that the earliest magmas in the rift are more arc-like in their sulfur isotope composition than the later magmas. The d34S values from the forearc sites are similar to or heavier than the sulfur isotope composition of the present arc.