120 resultados para Transgression feminine


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bei Schüttsiel (Nordfriesland) konnten die ersten Auswirkungen der postglazialen Meerestransgression durch eine Reihe von 14C-Bestimmungen datiert werden. Für den Beginn der Vermoorung (~ 485 cm unter NN) ergab sich ein Alter von 5630 ± 70 Jahren. Der Torf/Klei-Kontakt (~ 470-473 cm unter NN) konnte auf ein Alter von 5460 ± I30 Jahren oberhalb und 5520 ± 130 Jahren unterhalb des Kontaktes eingeengt werden. Auf Altersverfälschungen durch tiefwurzelnde Phragmites-Rhizome wird aufmerksam gemacht. An entsprechendem Probenmaterial durchgeführte l4C-Datierungen bekräftigen den Verdacht auf eine mögliche Datenverschiebung. Zwei tonreiche Schichten aus dem oberen Torfhorizont ('Upper Peat') wurden auf 1850 ± 50 Jahre (A: ~300 cm unter NN) und 1980 ± 50 Jahre V. Chr. (B: ~ 315 cm unter NN) datiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baltic coast of Mecklenburg-Vorpommern is located in the transition Zone between the region of Fennoscandian Uplift and the Central European Depression. In relation to the eustatic sea-level rise, the northeast coast shows a slower inundation, while for the southwestern area a faster transgression is indicated, which can be attributed to crustal movements. To determine the spatial and temporal differences since the onset of the Littorina Transgression, three relative sea-level curves have been established along a transect parallel to the gradient of upliftlsubsidence. The Wismar Bay area is one endpoint of the transect demonstrating today 10 Abb., 2 Tab. a relative sea-level rise of 1.4 mm/a. To determine the relative sea-level curve for the Wismar Bay, two sites were investigated on Rustwerder Spit (Poel) and Redentin. They provided reliable depth-age data, while the stratigraphy was additionally supported by lithological/geochemical, pollen, diatom and macrofossil data. Additional evidence was provided by archaeological submarine surveys and excavations. Comparing the new relative sea-level curve with a curve from the Vorpommern coast, it can be shown that for the period from 4000 cal BC until present, the differences between the two curves are caused by a constant neotectonic movement, while for the older periods an increasing isostatic component must be taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complete section of an unconsolidated sedimentary sequence about 5 m thick was sampled in the western margin of the Campeche Bank with use of gravity cores. The sequence forms a flat sea bottom at depth of 51-53 m and rests on a consolidated basement composed of coral limestones and carbonate sandstones. Initiation of deposition of unconsolidated sediments in this area is related to a sea transgression caused by sea level rise that followed the Würm glaciation stage about 10-11 ky ago. Analysis of grain size and chemical compositions of sediments and study of biogenic carbonate remains made it possible to outline environmental changes in this region during the last 10 ky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carried out oxygen and carbon isotope studies on monospecific foraminifer samples from DSDP Sites 522, 523, and 524 of Leg 73 in the central South Atlantic Ocean. The oxygen isotope ratios show a warming of 2 to 3 °C in bottom water and 5°C in surface water during the Paleocene and early Eocene. The carbon isotope values indicate strong upwelling during the early Eocene. The 1% increase in the d18O values of benthic and planktonic foraminifers at Site 523 in the later middle Eocene we ascribe to changes in the pattern of the evaporation and precipitation. The changes may be due to the worldwide Lutetian transgression. The oxygen ratios for the benthic and planktonic foraminifers indicate a cooling at the Eocene/Oligocene transition. The maximum temperature drop (5°C for benthic and 3°C for planktonic foraminifers) is recorded slightly beyond the Eocene/Oligocene boundary and took place over an interval of about 100,000 yr. The pattern of currents in the Southern Hemisphere was mainly structured by a precursor of the subtropical convergence during the Paleocene to late Eocene. The cooling at the Eocene/Oligocene transition led to drastic changes in the circulation pattern, and a precursor of the Antarctic convergence evolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent drilling on the Kerguelen Plateau (Ocean Drilling Program Leg 183) has provided a unique and exciting high latitude record of palaeoceanographic change during the Cenomanian-Turonian in the Southern Ocean. The benthic foraminiferal succession at Site 1138 records the evolution of the Kerguelen Plateau from a subaerially exposed platform in the Cenomanian to a bathyal, pelagic environment in the early Turonian, following a major transgressive pulse and increased thermal subsidence of the Kerguelen Plateau, which led to a sea-level rise of possibly several hundred metres. Diversified benthic foraminiferal assemblages indicate an upper bathyal, mesotrophic setting after the peak of the transgression. The assemblages exhibit strong similarities to temperate, shelf and slope assemblages in the Northern Hemisphere. This bimodal distribution reflects the existence of open oceanic gateways and a dynamic trans-hemispheric global circulation. Equatorial assemblages are characterized by a low-diversity, high carbon flux biofacies. Assemblages from Alaska demonstrate high organic productivity and low oxygen conditions and the prevalence of elevated temperatures on the flooded shelf of the North Slope. Our results show that the distribution of upper bathyal benthic foraminifera was strongly modulated by carbon flux and oxygenation fluctuations, and not by physical migration barriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.