90 resultados para Trans-Neptunian objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neptunian dikes and cavities as weil as their fillings are described from Middle to Upper Devonian carbonates of the Warstein area. The genesis of the pre-Upper Carboniferous dikes is due to pre-orogenic synsedimentary tensional movements. Lifting, subsidence and tilting caused joints and cracks, which are enlarged to dikes and cavities on submarine conditions. The post-Upper Carboniferous dikes are based on the orogenesis during Upper Carboniferous time, causing numerous tectonical divisional planes in the sediments. Along these planes a far-reaching karstification took place since mesozoic time. According to their size the cavities are subdivided into macro-, mega- and microdikes. With the exception of one macrodike all the others are limited to the massive limestone. Megadikes especially occur in Upper Devonian cephalopod limestone and in the Erdbach limestone, microdikes can be found in all carbonatic rocks. The dikes follow pre-orogenic, tectonical and sedimentary divisional planes and are orientated to ac-, bc- as well as bedding planes and diagonal directions. The fillings happened down from above either in a solitary event or repeatedly in long-lived dikes during a span of several ten millions of years. More seldom the fillings took place laterally or upside from beneath. The dikes contain - without regard to autochthonous conodont faunas - older and/or younger mixed faunas, too. Occasionally they were used as life district by a trilobite fauna adapted to the dikes. The dikes represent sedimentary pitfalls and conserve sediments eroded in other places. Therefore, by aid of the fillings, it can be demonstrated, that stratigraphic gaps are not absolutely due to primary interruptions of sedimentation, but were caused by reworking. Some dikes contain the distal offsets of slides and suspension streams. Relations between condensation and development of dikes could not be derived in the Warstein area. However, an increase of the frequency of dikes towards east to the eastern margin of the Warstein carbonate platform could be pointed out. This margin is a slope, persisting more than 10 millions of years, between a block and a basin. Evidently cracks and dikes, which were caused by settlements, slides and earth quakes, occured there frequently. The Warstein dikes and cavities, caused by karstification, are filled with terrestrial Lower Cretaceous, marine Upper Cretaceous and terrestrial Pleistocene to Holocene sediments. Tertiary sediments could not be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cores from four Ocean Drilling Program (ODP) sites were examined for planktonic foraminifers. One sample per core (from core-catchers in Holes 806B and 807B and from Section 4 in Holes 847B and 852B) was examined through the interval representing the last 5.8 m.y. Sites 806 (0°19.1'N; 159°21.7'E) and 847 (0o12.1'N; 95°19.2'W) are beneath the equatorial divergence zone. Sites 807 (3°36.4'N; 156°37.5'E) and 852 (5°19.6'N; 110°4.6'W) are located north of the equator in the convergence zone created by the interaction of the westward-flowing South Equatorial Current (SEC) and the eastward-flowing North Equatorial Countercurrent (NECC). Specimens were identified to species and then grouped according to depth habitat and trophic level. Species richness and diversity were also calculated. Tropical neogloboquadrinids have been more abundant in the eastern than in the western equatorial Pacific Ocean throughout the last 5.8 m.y. During the mid-Pliocene (3.8-3.2 Ma), their abundance increased at all sites, while during the Pleistocene (after ~ 1.6 Ma), they expanded in the east and declined in the west. This suggests an increase in surface-water productivity across the Pacific Ocean during the closing of the Central American seaway and an exacerbation of the productivity asymmetry between the eastern and western equatorial regions during the Pleistocene. This faunal evidence agrees with eolian grain-size data (Hovan, 1995) and diatom flux data (Iwai, this volume), which suggest increases in tradewind strength in the eastern equatorial Pacific that centered around 3.5 and 0.5 Ma. The present longitudinal zonation of thermocline dwelling species, a response to the piling of warm surface water in the western equatorial region of the Pacific, seems to have developed after 2.4 Ma, not directly after the closing of the Panama seaway (3.2 Ma). Apparently, after 2.4 Ma, the piling warm water in the west overwhelmed the upwelling of nutrients into the photic zone in that region, creating the Oceanographic asymmetry that exists in the modern tropical Pacific and is reflected in the microfossil record. In the upper Miocene and lower Pliocene sediments, the ratio of thermocline-dwelling species to mixed-layer dwellers is 60%:40%. During the mid-Pliocene, the western sites became 40% thermocline and 60% mixed-layer dwellers. Subsequent to -2.4 Ma, the asymmetry increased to 20%: 80% in the west and the reverse in the east. This documents the gradual thickening of the warm-water layer piled up in the western tropical Pacific over the last 5.8 m.y. and reveals two "steps" in the biotic trend that can be associated with specific events in the physical environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The datasets present measurements of cDOM absorption in lakes, rivers and streams of Yamal and Gydan Peninsula area during the summer periods from 2012-2014 and 2016. In summer seasons of 2012 - 2013 water samples was collected during "Yamal-Arctic" Expedition. All of the research areas were located near the coastline of Yamal, Yavay, and Gydan Peninsula and Bely Island. In 2012 water samples from rivers, lakes and streams were taken near New Port, Cape Kamenny and Tambey settlements and in basins (water catchments) of the Sabetta, Seyakha, Yuribey (Baydaratskaya Bay, Gydan Peninsula) and Mongocheyakha rivers. In 2013 water samples from rivers, lakes and streams were taken in the Yavai Peninsula, Yayne Vong bay and in the basins (water catchments) of the Sabetta, Mongocheyakha and Yuribey (Gydan Peninsula) rivers. In 2014 lakes were sampled in the Erkuta River basin, south of Yamal Peninsula. In 2016 lakes and rivers were sampled it the Erkuta River basin and Polar Ural area. cDOM is operationally defined by the chosen filter pore size. Samples have been consistently filtrated through 0.7 µm pore size glas fibre filters. cDOM filtrates have been stored in darkness and have been measured after the expedition using the dual-beam Specord200 laboratory spectrometer (Jena Analytik) at the Otto Schmidt Laboratory OSL, Arctic and Antarctic Research Institute, St. Petersburg, Russia. The OSL cDOM protocol (Heim and Roessler, 2016) prescribes 3 Absorbance (A) measurements per sample from UV to 750 nm against ultra-pure water. The absorption coefficient, a, is calculated by a = 2.303A/L, where L is the pathlength of the cuvette [m], and the factor 2.303 converts log10 to loge. The output of the calculation is a continuous spectrum of a. The cDOM a spectra are used to determine the exponential slope value for specific wavelength ranges, S by fitting the data between min and max wavelength to an exponential function. We provide cDOM absorption coefficients for the wavelengths 254, 260, 350, 375, 400, 412, 440, 443 nm [1/m] and Slope values for three different UV, VIS, wavelength ranges: 275 to 295 nm, 350 to 400 nm, 300 to 500 nm [1/m]. All data were carried out by scientists from Arctic and Antarctic Research Institute and Saint Petersburg State University of Russia during "Yamal-Arctic" expeditions in 2012-2013, RFBR project No 14-04-10065 in 2014, No 14-05-00787 in 2016.