41 resultados para Tr-1 phenotype
Resumo:
A compilation of chemical analyses of Pacific Ocean nodules using an x-ray fluorescence technique. The equipment used was a General Electric XRD-5 with a tungsten tube. Lithium fluoride was used as the diffraction element in assaying for all elements above calcium in the atomic table and EDDT was used in conjunction with a helium path for all elements with an atomic number less than calcium. Flow counters were used in conjunction with a pulse height analyzer to eliminate x-ray lines of different but integral orders in gathering count data. The stability of the equipment was found to be excellent by the author. The equipment was calibrated by the use of standard ores made from pure oxide forms of the elements in the nodules and carefully mixed in proportion to the amounts of these elements generally found in the manganese nodules. Chemically analyzed standards of the nodules themselves were also used. As a final check, a known amount of the element in question was added to selected samples of the nodules and careful counts were taken on these samples before and after the addition of the extra amount of the element. The method involved the determination and subsequent use of absorption and activation factors for the lines of the various elements. All the absorption and activation factors were carefully determined using the standard ores. The chemically analyzed samples of the nodules by these methods yielded an accuracy to at least three significant figures.
Resumo:
Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).
Resumo:
The results of the International Permafrost Association's International Polar Year Thermal State of Permafrost (TSP) project are presented based on field measurements from Russia during the IPY years (2007-09) and collected historical data. Most ground temperatures measured in existing and new boreholes show a substantial warming during the last 20 to 30 years. The magnitude of the warming varied with location, but was typically from 0.5°C to 2°C at the depth of zero annual amplitude. Thawing of Little Ice Age permafrost is ongoing at many locations. There are some indications that the late Holocene permafrost has begun to thaw at some undisturbed locations in northeastern Europe and northwest Siberia. Thawing of permafrost is most noticeable within the discontinuous permafrost domain. However, permafrost in Russia is also starting to thaw at some limited locations in the continuous permafrost zone. As a result, a northward displacement of the boundary between continuous and discontinuous permafrost zones was observed. This data set will serve as a baseline against which to measure changes of near-surface permafrost temperatures and permafrost boundaries, to validate climate model scenarios, and for temperature reanalysis.