613 resultados para Total nitrogen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2006 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed before sowing in April 2002. Five independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were dried at 40°C and then segmented to a depth resolution of 5 cm giving six depth subsamples per core. All samples were analyzed independently and averaged values per depth layer are reported. Sampling locations were less than 30 cm apart from sampling locations in other years. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising stable nitrogen isotope ratios (d15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The d15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated d15N values (> 20 per mil) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (d15N > 10 per mil) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a d15N between 5 and 6 per mil had low d15N values (< 2 per mil), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore-onshore transect also reflect the gradient of low d15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual d15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing d15N trend (increase of 2.5 per mil) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The d15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising d13C in step with rising d15N in these cores is best explained by increasing productivity caused by eutrophication.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic geochemical investigations were performed on sediments of Leg 130 to reconstruct the depositional environment of the Ontong Java Plateau. The Miocene to Quaternary sediments collected during the drilling campaign are characterized by extremely low organic carbon contents. As indicated by C/N ratios and Rock-Eval data, most of the organic matter is probably of marine origin. Based on mass-accumulation rates of organic carbon, the paleoproductivity for the Miocene-Pliocene and the late Pliocene-Pleistocene time intervals as well as the modern surface-water production were estimated. The productivity values of the surface sediments (25-59 gC/m2/yr) reflect the various influences of the equatorial upwelling cell on the different sites. The accumulation rates of organic carbon are generally low; however, they show a distinct increase at 8 Ma and a decrease at 2 Ma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We determined the C and N concentrations and isotopic compositions of sediments in the prism sampled during Ocean Drilling Program Legs 170 and 205 offshore Costa Rica, with the goals of evaluating sediment sources and extents of diagenesis and identifying any effects of infiltrating fluids on the sedimentary C and N. The sediments from Leg 170 Site 1040 contain 0.85-1.96 wt% total organic carbon (TOC) with Vienna Peedee belemnite (VPDB) d13CVPDB from -26.3 per mil to -22.5 per mil, and 832-2221 ppm total nitrogen (TN) with d15Nair from +3.5 per mil to +6.6 per mil. Sediment TN concentrations and d15N values show dramatic downhole increases within the uppermost 130 m of the section and more gradual downhole decreases from 130 meters below seafloor (mbsf) to the base of the décollement at ~370 mbsf. Concentrations and isotopic compositions of TOC are relatively uniform within the entire section, showing some minor perturbation within the décollement zone. In the uppermost 100 m, upsection increases in TN concentrations at constant TOC concentrations produce significant increases in atomic TOC/TN ratios from ~8 to ~18. Carbonate (calcite) contents in the wedge sediments are generally low (<4 wt%), but the d13C and Vienna standard mean ocean water (VSMOW) d18OVSMOW values vary significantly from -26.1 per mil to +4.1 per mil and from +30.0 per mil to +35.3 per mil, respectively. Concentrations and isotopic compositions of TOC and TN for sediments from Leg 205 Sites 1254 and 1255 overlap well with C-N data for sediments from the same depth intervals obtained during Leg 170 at Site 1040.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).