52 resultados para Time for Retirement Contribution
Resumo:
In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the High Nutrient Low Chlorophyll (HNLC) surrounding waters (October-November 2011, KEOPS 2). The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Comparison with the diatom assemblage composition of a sediment trap deployed in the iron-fertilized area suggests that the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant yet heavily silicified cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis. Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.
Resumo:
Homogenized data series of total ozone measurements taken by the regularly and well calibrated Dobson and Brewer spectrophotometers at Hradec Králové (Czech) and the data from the re-analyses ERA-40 and ERA-Interim were assimilated and combined to investigate differences between the particular data sets over Central Europe, the NH mid-latitudes. The Dobson-to-Brewer transfer function and the algorithm for approximation of the data from the re-analyses were developed, tested and applied for creation of instrumentally consistent and completed total ozone data series of the 50-year period 1961-2010 of observations. The assimilation has reduced the well-known seasonal differences between Dobson and Brewer data below the 1% calibration limit of the spectrophotometers. Incorporation of the ERA-40 and ERA-Interim total ozone data on days with missing measurements significantly improved completeness and reliability of the data series mainly in the first two decades of the period concerned. Consistent behaviour of the original and assimilated data sets was found in the pre-ozone-hole period (1961-1985). In the post-Pinatubo (1994-2010) era the data series show seasonal differences that can introduce uncertainty in estimation of ozone recovery mainly in the winter-spring season when the effect of the Montreal Protocol and its Amendments is expected. All the data sets confirm substantial depletion of ozone also in the summer months that gives rise to the question about its origin. The assimilated and completed data series of total ozone will be further analyzed to quantify chemical ozone losses and contribution of natural atmospheric processes to the ozone depletion over the region. This case study points out importance of selection and evaluation of the quality and consistency of the input data sets used in estimation of long-term ozone changes including recovery of the ozone layer over the selected areas.
Resumo:
Planktic foraminifera are heterotrophic mesozooplankton of global marine abundance. The position of planktic foraminifers in the marine food web is different compared to other protozoans and ranges above the base of heterotrophic consumers. Being secondary producers with an omnivorous diet, which ranges from algae to small metazoans, planktic foraminifers are not limited to a single food source, and are assumed to occur at a balanced abundance displaying the overall marine biological productivity at a regional scale. We have calculated the assemblage carbon biomass from data on standing stocks between the sea surface and 2500 m water depth, based on 754 protein-biomass data of 21 planktic foraminifer species and morphotypes, produced with a newly developed method to analyze the protein biomass of single planktic foraminifer specimens. Samples include symbiont bearing and symbiont barren species, characteristic of surface and deep-water habitats. Conversion factors between individual protein-biomass and assemblage-biomass are calculated for test sizes between 72 and 845 µm (minimum diameter). The calculated assemblage biomass data presented here include 1057 sites and water depth intervals. Although the regional coverage of database is limited to the North Atlantic, Arabian Sea, Red Sea, and Caribbean, our data include a wide range of oligotrophic to eutrophic waters covering six orders of magnitude of assemblage biomass. A first order estimate of the global planktic foraminifer biomass from average standing stocks (>125 µm) ranges at 8.5-32.7 Tg C yr-1 (i.e. 0.008-0.033 Gt C yr-1), and might be more than three time as high including the entire fauna including neanic and juvenile individuals adding up to 25-100 Tg C yr-1. However, this is a first estimate of regional planktic-foraminifer assemblage-biomass (PFAB) extrapolated to the global scale, and future estimates based on larger data-sets might considerably deviate from the one presented here. This paper is supported by, and a contribution to the Marine Ecosystem Data project (MAREDAT).
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
Resumo:
Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ~56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ~22 ka) show persistent vital effects of ~2 per mil. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ~350 ppm (Pliocene) to ~180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.