41 resultados para Thrust Belt
Resumo:
Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2<250) and stable carbon isotopic compositions (d13C-CH4 >-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.
Resumo:
The Great Belt, the largest inlet to the Baltic Sea, has a deep and well defined channel system. A distinct thermohaline layer at roughly 18 to 20 m of water depth separates the saltier and generally cooler deeper North Sea water from the brackish and warmer surface water. It is practically a current dominated area, with the strongest bottom currents due to prolonged west winds. The size and shape of the surface sediments and their grain size distributions show a close relationship with the prevailing hydrographical conditions. Southerly current marks predominate while northerly directions are confined to 10 to 14 m of water depth. The degree of bioturbation is highest in the uppermost sedimentary cover where practically all original stratification has been destroyed. Various bioturbate structures have been identified with the fauna. Coiling ratios of Ammonia beccarii (Linnaeus) have been successfully applied for correlation in the postglacial sediments of the early Littorina Transgression. The succession shows that in the Boreal brackish water conditions were probably followed by peat and limnic sediments as the sea regressed. With the Littorina Transgression, the sea again entered the area and high sedimentation rates resulted in the major deposits of the Great Belt. At least for the last 4000 years, sedimentation rates had been very low. Present day currents sweep out the sediments, mainly to the southern marginal areas.
Resumo:
The Shackleton Range can be divided into three major units: (1) The East Antarctic Craton and its sedimentary cover (Read Group and Watts Needle Formation), (2) the allochthonous Mount Wegener Nappe (Mount Wegener Formation, Stephenson Bastion Formation, and Wyeth Heights Formation), and (3) the northern belt (basement: Pioneer and Stratton Groups, sedimentary cover: Haskard Highlands Formation (allochthonous?), and Blaiklock Glacier Group). The northern units are thrust over the southern ones. The thrusting is related to the Ross Orogeny. The Mount Wegener Nappe, which appears to be a homogeneous tectonic unit, consists of a Precambrian basement (Stephenson Bastion Formation, Wyeth Heights Formation?) and a Cambrian cover (Mount Wegener Formation). Some questions are still open for discussion: the position of the Haskard Highlands Formation (trilobite shales) may be erratic or represent a tectonic sliver, the relation of the former Turnpike Bluff Group, the origin of the crystalline basement west of Stephenson Bastion and others.