69 resultados para Temporal constraints analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent-past shoreline changes on reef islands are now subject to intensified monitoring via remote sensing data. Based on these data, rates of shoreline change calculated from long-term measurements (decadal) are often markedly lower than recent short-term rates (over a number of years). This observation has raised speculations about the growing influence of sea-level rise on reef island stability. This observation, however, can also be explained if we consider two basic principles of geomorphology and sedimentology. For Takú Atoll, Papua New Guinea, we show that natural shoreline fluctuations of dynamic reef islands have a crucial influence on the calculation of short-term rates of change. We analyze an extensive dataset of multitemporal shoreline change rates from 1943 to 2012 and find that differing rates between long- and short-term measurements consistently reflect the length of the observation interval. This relationship appears independent from the study era and indicates that reef islands were equally dynamic during the early periods of analysis, i.e. before the recent acceleration of sea-level rise. Consequently, we suggest that high rates of shoreline change calculated from recent short-term observations may simply result from a change in temporal scale and a shift from geomorphic equilibrium achieved over cyclic time towards an apparent disequilibrium during shorter periods of graded time. This new interpretation of short- and long-term shoreline change rates has important implications for the ongoing discussion about reef island vulnerability, showing that an observed jump from low to high rates of change may be independent from external influences, including but not limited to sea-level rise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fine-grained sediments of the Cariaco Basin, Venezuela, of the last 130 ky, whose deposition history is well characterized, were analyzed geochemically in order to test the validity of sediment bulk geochemistry as an indicator of detrital provenance. Several binary and ternary diagrams as well as the chemical index of alteration (CIA) were tested for their capacity to discriminate the poorly contrasted detrital sources to the Cariaco Basin, and to describe the temporal evolution of the contributions of these different sources. Most of the diagrams tested did not allow a good discrimination of sources or, when sources were well discriminated, did not allow an interpretation of the temporal variations consistent with the known history. A relatively good discrimination of sources and a consistent interpretation of temporal variations were however obtained using Hf vs. Th and La/Yb vs. Gd/Yb binary diagrams, as well as Ti-Zr-Th, Ti-Zr-La, and Lu-Hf-Th ternary diagrams. Compared to the previous studies of the detrital content of the Cariaco Basin sediments, the geochemical approach permitted the recognition of a sediment contribution eroded from the Unare platform and Gulf of Cariaco during rapid sea level oscillations, and the contribution of Saharan eolian particles during the Younger Dryas-Preboreal and MIS6-5 transition. The choice of plotted elements was determined after considering carrier minerals, so that different elements may be informative in different sedimentary contexts. Overall, mineral sorting during transport appears as a major limit to quantitative estimation of the different contributions. In particular mineral sorting leads to the selective enrichment of elements associated with clays (Al, Rb, Th and LREE) in sediments deposited in the basin. Unless the geochemical effect of mineral sorting can be measured, it appears that quantitative provenance analysis should be performed on fractions of similar grain size instead of bulk sediment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541 Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation. The strongly negative d13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative d13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive d13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions. Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive d13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean. Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A history of Mesozoie and Cenozoic palaeoenvironments of the North Atlantie Oeean has been developed based on a detailed analysis of the temporal and spatial distribution of major pelagie sediment facies, of hiatuses. of bulk sediment accumulation rates, and of concentrations and fluxes of the main deep-sea sediment components. The depositional history of the North Atlantic can be subdivided into three major phase: (a) Late Jurassie and Early Cretaceous phase: clastic terrigenous and biogenic pelagic sediment components accumulated rapidly under highly productive surface water masses over the entire occan basin; (b) Late Cretaceous to Early Miocene phase: relatively little terrigenous and pelagic biogenic sediment reached the North Atlantic Ocean floor, intensive hiatus formation occurred at variable rates, and wide stretches of the deep-ocean floor were covered by slowly accumulating terrigenous muds: (c) Middle Miocene to Recent phase: accumulation rates of biogenic and terrigenous deep-sea sediment components increased dramatically up to Quaternary times, rates of hiatus formation and the intensity of deep-water circulation inferred from them seem to have decreased. However, accumulation rate patterns of calcareous pelagic sediment components suggest that large scale reworking and di splacement of deep-sea sediments occurred at a variable rate over wide areas of the North Atlantic during this period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A temporal change in stable isotope (SI) composition of jellyfish in the Kiel Fjord, Western Baltic Sea, was documented by analyzing delta13C, delta15N and delta34S of bell tissue of Aurelia aurita and Cyanea capillata in the period between June and October 2011. A strong and significant temporal change in all SI values of A. aurita was found, including an increase of ~3permille in delta13C, a decrease of ~4permille in delta15N and sharp decline of ~7permille in delta34S. Sampling from 18 m to surface.