40 resultados para TIME-VARIATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous sediment color records with a resolution of one measurement per millimeter were generated for Site 1098 (Palmer Deep, Antarctic Peninsula) from digital images of the core surfaces to test if the laminated intervals at this site will allow for analysis of high-frequency climate variability in the Circum-Antarctic. Long-term variation in color values correlates with gamma-ray attenuation bulk density. Darker colors are found in laminated intervals with lower bulk density, high biogenic silica, and high total organic carbon content. Darker color values result from the addition of dark laminae to background sediments that show little variation in color. The thicknesses of dark and light laminae were measured in the top 25 meters composite depth to determine the temporal resolution of the laminae. The alternation between dark, biogenic-rich laminae and background sediment essentially represents an annual cycle, but the sediment is not consistently varved. The modal thickness of light laminae is close to the long-term average annual accumulation rate, and results indicate that approximately half of the dark/light couplets in distinctly laminated intervals represent a single year. Missing biogenic laminae are interpreted to represent reduced primary productivity during cold years with delayed breakup of the sea-ice cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphological variability (coiling properties, size and shape) of the planktic foraminifer Contusortuncana contusa (Cushman) in the terminal Cretaceous ocean was examined at eight deep-sea sites and two continental sections from low (16°) to middle (42°) paleolatitudes in both hemispheres. The material used in this study includes samples from the South Atlantic (DSDP Sites 356, 527 and 525A), North Atlantic (Sites 384 and 548A), Indian and Pacific Oceans (DSDP Site 465A and ODP Sites 761C and 762C) and Tethyan Ocean (outcrop sections from El-Kef and Caravaca). On average 45 specimens from two samples per location were analysed, from an interval corresponding approximately to the last 60 kyr of the Cretaceous. No differences in coiling direction (dextral proportions were > 90% in all samples), percentage of kummerform specimens (usually > 50%) and number of chambers in the last whorl (4-5) were observed between the sites. Both test size (expressed as spiral outline area and test volume) and total number of chambers increase significantly towards lower latitudes. Similarly, test conicity, examined by shape coordinate and eigenshape methods, and angularity of the spiral outline show a rather continuous, slight increase towards lower latitudes. Kummerform specimens of C. contusa were slightly larger and more conical than normalforms and possessed substantially more chambers (both totally and in the last whorl). A principal components analysis of the sample means of five variables describing size and shape clearly distinguished high-latitude sites (525A, 527, 548A, 761C and 762C) from low-latitude sites (384, 465A, Caravaca and El-Kef). Specimens from Site 356 are transitional with respect to those two groups. The results indicate: (1) considerable morphological variation in C. contusa during the terminal Cretaceous comparable to that known in many Recent planktic foraminiferal species and (2) a geographical distribution of this variation corresponding to previously suggested biogeographic schemes based on quantitative analysis of planktic foraminiferal assemblages. Despite the differences in sample means, the overall morphology of C. contusa overlaps among the sites studied, supporting the classification of all C. contusa morphotypes as a single species. Similarly, no discrete morphologic groups could be distinguished within any of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last glacial-interglacial transition or Termination I (T I) is well documented in the Black Sea, whereas little is known about climate and environmental dynamics during the penultimate Termination (T II). Here we present a multi-proxy study based on a sediment core from the SE Black Sea covering the penultimate glacial and almost the entire Eemian interglacial (133.5 ±0.7-122.5 ±1.7 ka BP). Proxies comprise ice-rafted debris (IRD), O and Sr isotopes as well as Sr/Ca, Mg/Ca, and U/Ca ratios of benthic ostracods, organic and inorganic sediment geochemistry, as well as TEX86 and UK'37derived water temperatures. The ending penultimate glacial (MIS 6, 133.5 to 129.9 ±0.7 ka BP) is characterised by mean annual lake surface temperatures of about 9°C as estimated from the TEX86 palaeothermometer. This period is impacted by two Black Sea melt water pulses (BSWP-II-1 and 2) as indicated by very low Sr/Ca ostracods but high sedimentary K/Al values. Anomalously high radiogenic 87Sr/86Sr ostracod values (max. 0.70945) during BSWP-II-2 suggest a potential Himalayan source communicated via the Caspian Sea. The T II warming started at 129.9 ±0.7 ka BP, witnessed by abrupt disappearance of IRD, increasing d18O ostracod values, and a first TEX86 derived temperature rise of about 2.5°C. A second, abrupt warming step to ca. 15.5°C as the prelude of the Eemian warm period is documented at 128.3 ka BP. The Mediterranean-Black Sea reconnection most likely occurred at 128.1 ±0.7 ka BP as demonstrated by increasing Sr/Ca ostracods and U/Ca ostracods values. The disappearance of ostracods and TOC contents >2% document the onset of Eemian sapropel formation at 127.6 ka BP. During sapropel formation, TEX86 temperatures dropped and stabilised at around 9°C, while UK'37 temperatures remain on average 17°C. This difference is possibly caused by a habitat shift of Thaumarchaeota communities from surface towards nutrient-rich deeper and colder waters located above the gradually establishing halo-and redoxcline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set comprises time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of several experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). Aboveground community biomass was normally harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots in the Jena Experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship. The following series of datasets are contained in this collection: 1. Plant biomass form the Main Experiment: In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). 2. Plant biomass from the Dominance Experiment: In the Dominance Experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). 3. Plant biomass from the monoculture plots: In the monoculture plots the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species like the other experiments in May 2002. All plots were maintained by bi-annual weeding and mowing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.