598 resultados para TIME SERIES
Resumo:
The marine laboratories in Plymouth have sampled at two principle sites in the Western English Channel for over a century in open-shelf (station E1; 50° 02'N, 4° 22'W) and coastal (station L4; 50° 15'N, 4° 13'W) waters. These stations are seasonally stratified from late-April until September, and the variable biological response is regulated by subtle variations in temperature, light, nutrients and meteorology. Station L4 is characterized by summer nutrient depletion, although intense summer precipitation, increasing riverine input to the system, results in pulses of increased nitrate concentration and surface freshening. The winter nutrient concentrations at E1 are consistent with an open-shelf site. Both stations have a spring and autumn phytoplankton bloom; at station E1, the autumn bloom tends to dominate in terms of chlorophyll concentration. The last two decades have seen a warming of around 0.6°C per decade, and this is superimposed on several periods of warming and cooling over the past century. In general, over the Western English Channel domain, the end of the 20th century was around 0.5°C warmer than the first half of the century. The warming magnitude and trend is consistent with other stations across the north-west European Shelf and occurred during a period of reduced wind stress and increased levels of insolation (+20%); these are both correlated with the larger scale climatic forcing of the North Atlantic Oscillation.
Resumo:
A monitoring programme for microzooplankton was started at the long-term sampling station ''Kabeltonne'' at Helgoland Roads (54°11.30' N; 7°54.00' E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.