196 resultados para Summer Dormancy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This field study was performed to obtain a defensible value for the surface reflectivity (albedo) of Juniper shrublands that could be used by Brigitta Ammann to quantitatively assess the role of Juniper shrublands in surface energy balance feedbacks to climate after the last glaciation. Measurements were carried out over a Juniper shrubland at mount Niederhorn, Switzerland (North of the Lake of Thun) during summer 2009 over a Juniper shrubland that was considered to present the most representative surface cover to estimate albedo for a modeling exercise that addresses biotic responses to the rapid warming around 14.685 ka BP at Gerzensee (Central Europe). For a detailed description of this data set see "Further details:"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below -10 °C for 3-5 weeks and the average monthly temperature was below 0 °C for 2-4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll-a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to 'greener' lakes on the Canadian prairies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dataset is based on samples collected in the summer of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 47 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sampling area was extended to the Western-South area off the Black Sea coast from Kaliakra cape toward the Bosforous. Samples were collected along four transects. The whole dataset is composed of 17 samples (from 10 stations) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. These data are organized in the "Control of eutrophication, hazardous substances and related measures for rehabilitating the Black Sea ecosystem: Phase 2: Leg I: PIMS 3065". Data Report is not published. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).