42 resultados para Structural adjustment program


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous structural features occur in the Leg 128 cores from the Japan Sea. They include (1) gravity-induced structures such as slump folds, (2) dewatering structures comprising several sets of veins, and (3) larger faults and veins developed in the volcanic basement of the Yamato Basin as well as in the sedimentary rocks of the Oki Ridge and Kita-Yamato Trough. Gravity-induced structures, mainly slumps and associated faults, suggest the existence of paleoslopes and the dominance of gravitational tectonics during the early and middle Miocene, at the Pliocene/Pleistocene boundary, and during the Quaternary. Several types of mud-filled veins having various shapes were observed. These are especially abundant in the middle Miocene siliceous claystones and porcellanites from the Kita-Yamato Trough. They have been interpreted as dewatering conduits that formed preferentially in highly porous, water-saturated diatomaceous muds on a slope, because of episodic loss of sediment strength, collapse of the sediment framework, and consequent fluid migration. The central part of the vein serves once as a fluid conduit, whereas the transition between conduit-controlled and intergranular flow occurs at the branching extremities, with concentration of fines. The likely trigger responsible for the strength loss is seismic activity. Development of these veins, spatially and chronologically linked to small normal microfaults, implies an extensional regime having layer-parallel extension and a local bedding-parallel shear couple, probably the result of gravitational gliding. The brittle fractures found in Yamato Basin basement Hole 794D cores comprise joints, faults, and veins filled with chlorite-saponite, saponite, and calcite. They suggest a likely transpressive to transtensional regime around the early Miocene/ middle Miocene boundary, with a north-northeast-south-southwest compression alternating with a west-northwest-eastsoutheast extension. The faults from Site 799 cores on the Yamato Rise exhibit a prominent early Miocene-middle Miocene extensional environment, a late Miocene-early Pliocene phase of normal and strike-slip faulting, and a final phase that began during the latest Pliocene. Site 798, on the Oki Ridge, reveals faults that recorded a consistent extensional tectonic regime from Pliocene to the Holocene. These data support the pull-apart kinematic model for early Miocene-middle Miocene time, as regarding the stress regime deduced from the Yamato Basin basement fractures. The recent compression known in the eastern margin of the Japan Sea was not documented by compressive structures at any site. The late Miocene-early Pliocene faulting phase corresponds to a major and general reorganization of the stress distribution in the arc area. Evidence for rapid and main subsidence and synsedimentary extension of the Yamato Basin and Yamato Rise areas between 20 and 15 Ma, and the concomitant rotation of southwest Japan, raise the question of links between this opening and the Shimanto Belt collision in southwest Japan, between the arc and the Philippine Sea Plate.