307 resultados para South Brazilian Shelf


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While modern sampling techniques, such as autonomous underwater vehicles, are increasing our knowledge of the fauna beneath Antarctic sea ice of only a few meters in depth, greater sampling difficulties mean that little is known about the marine life underneath Antarctic ice shelves over 100 m thick. In this study, we present underwater images showing the underside of an Antarctic ice shelf covered by aggregated invertebrate communities, most likely cnidarians and isopods. These images, taken at an average depth of 145 m, were obtained with a digital still camera system attached to Weddell seals Leptonychotes weddellii foraging just beneath the ice shelf. Our observations indicate that, similar to the sea floor, ice shelves serve as an important habitat for a remarkable amount of marine invertebrate fauna in Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contents of labile (acid-soluble) sulfides were determined in the upper layer of bottom sediments at 80 stations on the Caucasian shelf of the Black Sea. Maximum values of this parameter occurred in black mud accumulated in zones of intense pollution in the Gelendzhik and Tsemess bays and in shelf areas adjacent to large health resort objects and to seaports. Contents of acid-soluble sulfides in sediments varied from 400 to 900 mg S/dm**3 of wet mud. In zones of moderate pollution they varied from 200 to 400 mg S/dm**3. Rate of sulfate reduction was 10-40 mg S/dm**3 of wet sediment per day. Obtained data show that accumulation of labile sulfides in the upper layer of shelf bottom sediments is directly related to anthropogenic pollution and is one of the most hazardous environmental aftereffects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two shelf communities from the central part off the California Peninsula are described. The community of Amphiodia urtica - Nephtys ferruginea develops in the central part of the shelf within the depth range 95-105 m. The community of Nephtys ferruginea - Amphiura acrystata develops on the shelf edge at depth 110 m. Biomasses of both communities are very low (about 10 g/m**2). Species richness of the shelf community is high; more than 60 species occur in samples (43-51 species per a community). Various echinoderms and some other groups are abundant on the Californian shelf; these groups are absent in shelf areas of Peruvian and Benguela upwellings. Species structures of the communities were analyzed; the communities were shown to consist of coexisting, but not interacting guilds; this indicates that the communities are undersaturated with individuals. At the same time values of ABC-indices indicate that the communities are stable. We suggest that in this case adaptation to unfavorable but stable environment is observed (selection of species-stressolarents). An explanation seems to lie in the penetrating type of the upwelling in the Californian upwelling zone. Low biomass values seem to result from mass development of necto-benthic carnivorous crustaceans-galateids Pleuroncodes planiceps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two radiolarian assemblages are distinguished: an equatorial sub-assemblage of the tropical assemblage in the East Pacific Ocean, which differs somewhat from association of radiolarians in the western part of the ocean, and an assemblage close to transitional one between the tropical and the boreal. The latter is characterized by presence of considerable number of species typical for cold-water regions. Some criteria are presented for distinguishing radiolarian associations in nearshore regions from similar associations in regions of the open ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen surface sediment samples from the Pakistan shelf and upper continental slope and a Late Quaternary high-sedimentation rate core (573 m water depth, Pakistan continental margin) have been analysed to improve the understanding of the factors influencing pteropod preservation. The aragonite compensation depth (ACD) is located at 250-400 m water depth, which corroborates previous observations of a very shallow ACD in the northern Arabian Sea. With the exception of the Hab transect off Karachi, the ACD coincides with the upper boundary of the OMZ located at 250 m water depth. The shell preservation index of the pteropod Limacina inflata (LDX) was applied on six surface sediment samples showing good to very good preservation (LDX: 2.2 to 1.3). The 30 000 yr long record of sediment core SO90 137KA is characterized by alternations between bioturbated and laminated sediments. Bioturbated sediments occurring in the Early Holocene, Younger Dryas and time-equivalents of Heinrich events contain well to perfectly preserved tests of L. inflata (LDX: 2.1-0.2), whereas only traces of pteropods are found in laminated intervals. The close linkage of pteropod preservation in the surface sediments and in core 137KA to well-oxygenated conditions can be explained by repetitive intermediate water formation in the Arabian Sea down to at least 600 m water depth in times of enhanced NE monsoons during stadials and H-equivalents. Low amounts of pteropods in laminated sediments (interstadials, Late Holocene) and in the present-day oxygen minimum zone (OMZ) indicate a weak NE monsoon, stable OMZ and shallow ACD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.