200 resultados para South African War, 1899-1902


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2's, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ~2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ - 3 and FMQ - 1. This is consistent with fO2's of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2's as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2's in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively. Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ~FMQ - 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2's. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2's significantly greater than that of modern oceanic mantle. Instead, the fO2's inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in the strength of coastal upwelling in the South East Atlantic Ocean and summer monsoonal rains over South Africa are controlled by the regional atmospheric circulation regime. Although information about these parameters exists for the last glacial period, little detailed information exists for older time periods. New information from ODP Site 1085 for Marine Isotope Stages (MIS) 12-10 shows that glacial-interglacial productivity trends linked to upwelling variability followed a pattern similar to the last glacial cycle, with maximums shortly before glacial maxima, and minimums shortly before glacial terminations. During the MIS-11/10 transition, several periodic oscillations in productivity and monsoonal proxies are best explained by southwards shifts in the southern sub-tropical high-pressure cells followed by abrupt northwards shifts. Comparison to coeval sea-surface temperature measurements suggests that these monsoonal cycles were tightly coupled to anti-phased hemispheric climate change, with an intensified summer monsoon during periods of Northern (Southern) Hemisphere cooling (warming). The timing of these events suggests a pacing by insolation over precession periods. A lack of similar regional circulation shifts during the MIS-13/12 transition is likely due to the large equatorwards shift in the tropical convection zone that occurred during this extreme glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: