43 resultados para Soto, Hernando de, approximately 1500-1542


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable isotope composition of one epifaunal and three infaunal benthic foraminiferal species of a sediment core from 1800 m water depth of the western Arabian Sea was determined to evaluate deepwater oxygenation, organic matter remineralization, and early diagenetic processes during the past 190,000 years. The d18O records reveal species-specific metabolic effects, susceptibility to changes in carbonate ion concentration, and supralysoclinal calcite dissolution. The foraminiferal d13C records reveal changes in the stable carbon isotope gradients of pore water dissolved inorganic carbon (d13CDIC) and in the microhabitat depth of infaunal species. Maximum d13CDIC offsets between bottom and pore waters ranged between mean values of 0.8 and 1.2% corresponding to estimates of deepwater oxygen concentration between approximately 1 and 2.7 ml/l. Intervals of improved deepwater oxygenation coincided with high benthic foraminiferal diversity and indicate the admixture of well-oxygenated deepwater masses during interglacials. During interglacial maxima the d13C difference between epifauna and shallow infauna indicates highest organic matter remineralization rates at times of maximum organic matter fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing database for paleointensity estimates of the ancient geomagnetic field contains more than 1500 data points collected through decades of effort. Despite the huge amount of work put into obtaining these data, there remains a strong bias in the age and global distribution of the data toward very young results from a few locations. Also, few of the data meet strict criteria for reliability and most are of unknown quality. In order to improve the age and spatial distribution of the paleointensity database, we have carried out paleointensity experiments on submarine basaltic glasses from a number of DSDP sites. Of particular interest are the sites that provide paleointensity data spanning the time period 0.3-5 Ma, a time of relatively few high quality published data points. Our new data are concordant with contemporaneous data from the published literature that meet minimum acceptance criteria, and the combined data set yields an average dipole moment of 5.49 +/- 2.36*10**22 Am**2. This average value is comparable to the average paleofield for the period 5-160 Ma (4.2 +/- 2.3*10**22 Am**2) (Juarez et al., 1998, doi:10.1038/29746) and is substantially less than the value of approximately 8*10**22 Am**2 often quoted for the last 5 Myr (e.g. McFadden and McElhinny (1982) J. Geomagn. Geoelectr. 34, 163-189; Goguitchaichvili et al., 1999, doi:10.1016/S0012-821X(99)00010-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Mid-Pleistocene Transition (MPT), the dominant glacial-interglacial cyclicity as inferred from the marine d18O records of benthic foraminifera (d18Obenthic) changed from 41 kyr to 100 kyr years in the absence of a comparable change in orbital forcing. Currently, only two Mg/Ca-derived, high-resolution bottom water temperature (BWT) records exist that can be used with d18Obenthic records to separate temperature and ice volume signals over the Pleistocene. However, these two BWT records suggest a different pattern of climate change occurred over the MPT-a record from North Atlantic DSDP Site 607 suggests BWT decreased with no long-term trend in ice volume over the MPT, while South Pacific ODP Site 1123 suggests that BWT has been relatively stable over the last 1.5 Myr but that there was an abrupt increase in ice volume at ~900 kyr. In this paper we attempt to reconcile these two views of climate change across the MPT. Specifically, we investigated the suggestion that the secular BWT trend obtained from Mg/Ca measurements on Cibicidoides wuellerstorfi and Oridorsalis umbonatus species from N. Atlantic Site 607 is biased by the possible influence of D[CO3]2- on Mg/Ca values in these species by generating a low-resolution BWT record using Uvigerina spp., a genus whose Mg/Ca values are not thought to be influenced by D[CO3]2-. We find a long-term BWT cooling of ~2-3°C occurred from 1500 to ~500 kyr in the N. Atlantic, consistent with the previously generated C. wuellerstorfi and O. umbonatus BWT record. We also find that changes in ocean circulation likely influenced d18Obenthic, BWT, and d18Oseawater records across the MPT. N. Atlantic BWT cooling starting at ~1.2 Ma, presumably driven by high-latitude cooling, may have been a necessary precursor to a threshold response in climate-ice sheet behavior at ~900 ka. At that point, a modest increase in ice volume and thermohaline reorganization may have caused enhanced sensitivity to the 100 kyr orbital cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.